2025 in archosaur paleontology

New taxa of fossil archosaurs of every kind were described during the year 2025 (or scheduled to), and other studies related to the paleontology of archosaurs were published that year.

Pseudosuchians

New pseudosuchian taxa

Name Novelty Status Authors Age Type locality Location Notes Image

Crocodylus sudani[1]

Sp. nov

Valid

Salih et al.

Late Pleistocene

Atbara River

Sudan

A crocodile, a species of Crocodylus.

Lateral view of the Crocodylus sudani holotype skull, scalebar = 10 cm

Ibirasuchus[2]

Gen. et sp. nov

Valid

Iori et al.

Late Cretaceous

São José do Rio Preto Formation

Brazil

An itasuchid peirosaurian. The type species is I. gelcae.

Kostensuchus[3]

Gen. et sp. nov

Valid

Novas et al.

Late Cretaceous (Maastrichtian)

Chorrillo Formation

Argentina

A peirosaurid. The type species is K. atrox.

Kuttysuchus[4]

Gen. et sp. nov

Valid

Haldar, Ray & Bandyopadhyay

Late Triassic

Lower Dharmaram Formation

India

An aetosaur belonging to the tribe Paratypothoracini. The type species is K. minori.

Olkasuchus[5]

Gen. et sp. nov

Valid

Sotomayor et al.

Late Triassic (Norian)

Los Colorados Formation

Argentina

An aetosaur. The type species is O. walasto.

Paarthurnax[6]

Gen. et sp. nov

Platt, Adams & Brochu

Early Cretaceous (AptianAlbian)

Holly Creek Formation

United States
( Arkansas)

A neosuchian with anatomical similarities to goniopholidids and paluxysuchids. The type species is P. holliensis.

Pattisaura[7]

Gen. et sp. nov

Valid

Wu et al.

Late Triassic

Cooper Canyon Formation

United States
( Texas)

An early member of Crocodylomorpha. The type species is P. gracilis.

Piscogavialis laberintoensis[8]

Sp. nov

Zamora-Vega et al.

Miocene

Pisco Formation

Peru

A gavialid.

Pseudogavialis[9]

Gen. et comb. nov

Valid

Courville et al.

OligoceneMiocene

Lower Siwalik

Pakistan

A member of Gavialoidea. The type species is "Gharialis" curvirostris Lydekker (1886).

Sissokosuchus[10]

Gen. et sp. nov

Wilberg et al.

Early Cretaceous

Continental intercalaire

Mali

An itasuchid peirosaurian. The type species is S. maliensis.

Taihangosuchus[11]

Gen. et sp. nov

Valid

Wu et al.

Middle Triassic

Ermaying Formation

China

A member of the family Gracilisuchidae. The type species is T. wuxiangensis.

Tainrakuasuchus[12] Gen. et sp. nov Müller et al. Middle Triassic (Ladinian) Santa Maria Supersequence (Dinodontosaurus Assemblage Zone) Brazil A poposauroid. The type species is T. bellator.

Telkaralura[13]

Gen. et sp. nov

Valid

Von Baczko et al.

Late Triassic (Carnian)

Chañares Formation

Argentina

A member of the family Gracilisuchidae. The type species is T. coniceti.

Tewkensuchus[14]

Gen. et sp. nov

Valid

Bravo et al.

Early Paleocene

Salamanca Formation

Argentina

A sebecosuchian. The type species is T. salamanquensis

Thikarisuchus[15]

Gen. et sp. nov

Allen et al.

Late Cretaceous (Cenomanian)

Blackleaf Formation

United States
( Montana)

A neosuchian related to Wannchampsus and assigned to the new clade Wannchampsidae. The type species is T. xenodentes.

Thilastikosuchus[16]

Gen. et sp. nov

Valid

Carvalho et al.

Early Cretaceous

Quiricó Formation

Brazil

A notosuchian. The type species is T. scutorectangularis.

Wadisuchus[17]

Gen. et sp. nov

Valid

Saber et al.

Late Cretaceous (Campanian)

Quseir Formation

Egypt

A member of the family Dyrosauridae. The type species is W. kassabi.

General pseudosuchian research

Aetosaur research

Crocodylomorph research

  • A study on the diversity of cranial shapes of crocodylomorphs throughout their evolutionary history is published by Melstrom et al. (2025), who find that crocodylomorphs with generalist dietary ecology were most likely to survive and diversify after mass extinction events.[28]
  • A study on bone histology of Trialestes romeri, providing evidence of a rapid growth rate, is published by Ponce, Cerda & Desojo (2025).[29]
  • Redescription and a study on the affinities of Pseudhesperosuchus jachaleri is published by Leardi (2025).[30]
  • Srinivas et al. (2025) compare biomechanical and functional adaptations of skulls of different shapes in extant and extinct crocodyliforms, providing evidence that terrestrial taxa with dome-shaped skulls, which were not subject to hydrodynamic constraints during their evolution, were better adapted to resisting feeding-induced stresses compared to taxa with broad and flat snouts.[31]
  • Wang et al. (2025) describe a new specimen of Platyognathus hsui from the Lower Jurassic Lufeng Formation (China), identify P. hsui as an early-branching relative of gobiosuchids, and name a new superfamily Gobiosuchoidea.[32]
  • A study on the biodiversity of thalattosuchians throughout their evolutionary history, attempting to identify factors driving thalattosuchian evolution, is published by Forêt et al. (2025).[33]
  • Redescription of Macrospondylus bollensis is published by Johnson et al. (2025).[34]
  • Johnson et al. (2025) study the taphonomy of specimens of Macrospondylus bollensis and Platysuchus multiscrobiculatus from the Posidonia Shale (Germany), and identify features indicative of headfirst seafloor landings of teleosauroid specimens.[35]
  • Bhuttarach et al. (2025) describe fossil material of the possible largest member of the genus Indosinosuchus from the Phu Kradung Formation (Thailand), as well as fossil material of an indeterminate teleosauroid from the Klong Min Formation representing the first record of a member of this group from southern peninsular Thailand.[36]
  • Pellarin et al. (2025) study the femoral histology of Thalattosuchus superciliosus, and interpret the studied crocodylomorph as unlikely to be an endotherm.[37]
  • A study on the variation of the flexure of the tail in Callovian and Late Jurassic metriorhynchids is published by Le Mort et al. (2025).[38]
  • Albuquerque et al. (2025) describe isolated crocodyliform teeth from the Cretaceous (Albian–Cenomanian) Açu Formation (Brazil), including the first records of members of the group Sphagesauria, Itasuchidae and Candidodontidae from the Potiguar Basin reported to date.[39]
  • A study on metabolic rates of notosuchians, providing evidence of mass-independent maximal metabolic rates that were higher than those of extant crocodilians but lower than those of monitor lizards, in published by Sena et al. (2025).[40]
  • A study on the morphology, histology and growth of osteoderms of Late Cretaceous notosuchians from the Bauru Group (Brazil) is published by Cajado et al. (2025).[41]
  • Muscioni et al. (2025) describe fossil material of Doratodon cf. carcharidens from the Campanian strata from the Villaggio del Pescatore site (Italy), providing new information on the anatomy and tooth replacement pattern of Doratodon, including evidence of presence of an alveolar tissue vascularization and innervation system in the mandible that might have provided enhanced tactile sensitivity.[42]
  • The first histological study of appendicular bones of a peirosaurid is published by Navarro et al. (2025), who interpret their findings as indicative of different growth dynamics of the studied individual compared to other notosuchians.[43]
  • A study on the bone histology of Pissarrachampsa sera, providing evidence of differential growth rates among skeletal elements, is published by Aureliano et al. (2025).[44]
  • Redescription and a study of the phylogenetic affinities of Eremosuchus elkoholicus is published by Nicholl et al. (2025).[45]
  • Fossil material of a member or a relative of the genus Sebecus is described from the late Neogene strata of the Yanigua/Los Haitises Formation (Dominican Republic) by Viñola López et al. (2025).[46]
  • Martin & Jattiot (2025) describe fossil material of neosuchians (cf. Pholidosauridae and indeterminate Neosuchia) from the Salazac and Carniol sites in southeastern France, representing one of the few records of crocodylomorph fossils from the AptianAlbian interval found in marine deposits in Europe.[47]
  • Fossil material of a small-bodied atoposaurid, possibly representing a previously unrecognized taxon and providing information on the neuroanatomy of atoposaurids, is described from the Upper Jurassic Praia Azul Member of the Lourinhã Formation (Portugal) by Puértolas-Pascual (2025).[48]
  • Maréchal et al. (2025) describe fossil material of a hyposaurine dyrosaurid from the Maastrichtian strata from Bentiaba (Angola) and study the diversification rates of dyrosaurids, finding evidence of a hyposaurine diversification during the Maastrichtian.[49]
  • Kuzmin et al. (2025) describe the braincase osteology and neuroanatomy of Paralligator, and interpret their findings as indicative of similarity of brain modifications during ontogeny in paralligatorids and extant crocodilians.[50]
  • Kubo et al. (2025) study crocodyliform remains from the Turonian Tamagawa Formation (Japan), identify two osteoderms as probable paralligatorid fossil material, and interpret teeth from the studied assemblage as belonging to crocodyliforms that likely fed on mid- to large-sized tetrapods.[51]
  • New allodaposuchid fossil material, providing new information on the postcranial anatomy of members of this group, is described from the Upper Cretaceous (Maastrichtian) strata from the Fontllonga-6 locality (Fontllonga Group; Spain) by Della Giustina, Rocchi & Vila (2025).[52]
  • De Lapparent de Broin (2025) describes a new specimen of Massaliasuchus affuvelensis from the Campanian strata in the Fuveau lignite Mining Basin (Provence, France).[53]
  • A study on the anatomy and affinities of the first specimens of Borealosuchus from earliest Paleocene of Colorado, filling temporal and geographical gaps in the fossil record of members of the genus, is published by Lessner, Petermann & Lyson (2025).[54]
  • Walter et al. (2025) study the phylogenetic affinities of Deinosuchus and recover it as a member of the crocodylian stem group.[55]
  • Kuzmin, Skutschas & Sues (2025) describe a partial skull including the braincase of cf. Tadzhikosuchus sp. from the Turonian Bissekty Formation (Uzbekistan), interpreted as the stratigraphically oldest alligatoroid specimen reported to date and the first record of a Diplocynodon-like alligatoroid from the Late Cretaceous of Central Asia.[56]
  • Evidence from the study of the bone histology of Diplocynodon hantoniensis, interpreted as indicative of a similar growth rate in D. hantoniensis and the American alligator, is published by Hoffman et al. (2025).[57]
  • Description of the anatomy of the inner skull cavities of Diplocynodon tormis is published by Serrano-Martínez et al. (2025).[58]
  • Fossil material of a small alligatoroid, possibly representing a previously unrecognized taxon, is described from the Eocene Clarno Formation (Oregon, United States) by Stout et al. (2025).[59]
  • Evidence from the study of hindlimb biomechanics of extant American alligators and Deinosuchus riograndensis, indicating that adoption of more erect limb postures might have reduced limb bone stresses and facilitated the evolution of larger body sizes in terrestrial tetrapods, is presented by Iijima, Blob & Hutchinson (2025).[60]
  • The oldest crocodylian eggshells from Australia reported to date, probably representing parts of eggs produced by mekosuchines from the Tingamarra Local Fauna, are described from the Eocene strata of the Oakdale Sandstone (Queensland) by Panadès I Blas et al. (2025), who name a new ootaxon Wakkaoolithus godthelpi.[61]
  • Pligersdorffer, Burke & Mannion (2025) reconstruct the endocranial anatomy of Argochampsa krebsi, and report evidence of presence of salt glands in the studied gavialoid.[62]
  • Description of a new specimen of Dolichochampsa minima from the El Molino Formation (Bolivia), providing new information on the anatomy of members of this species, and a study on its phylogenetic affinities is published by Vélez-Rosado et al. (2025).[63]
  • Evidence of variability of the skull morphology of extant Nile crocodiles and broad-snouted crocodilians from the Paleogene strata in the Faiyum Governorate and Miocene strata from the Wadi Moghra site (Egypt) is presented by El-Degwi et al. (2025).[64]
  • Górka et al. (2025) revise crocodilian records from the early and middle Miocene strata in Czech Republic and Poland, and describe a new osteoderm from the Szczerców field of the Bełchatów mine (Poland) representing the northernmost record of a Neogene crocodilian reported to date.[65]
  • Harzhauser et al. (2025) describe an osteoderm of a crocodilian (possibly a member of the genus Diplocynodon) living approximately 12.2 million years ago from the strata of the Vienna Basin (Austria), representing the youngest record of a crocodilian from Central Europe reported to date.[66]
  • A study on alterations of crocodyliform fossils from the Adamantina Formation (Brazil) during diagenesis is published by Muniz et al. (2025).[67]
  • Hart, Atterholt & Wedel (2025) identify neural canal ridges (bony protrusions on the neural canal anchoring the denticulate ligaments that support the spinal cord) in caudal vertebrae of a member of the genus Thecachampsa from the Miocene Choptank Formation (Maryland, United States) and a member of the genus Deinosuchus from the Cretaceous (Campanian) Menefee Formation (New Mexico, United States), representing the first records of these structures reported in fossil crocodylians.[68]

Non-avian dinosaurs

New dinosaur taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Ahshislesaurus[69]

Gen. et sp. nov

Valid

Dalman et al.

Late Cretaceous (Campanian)

Kirtland Formation

United States
( New Mexico)

A saurolophine hadrosaurid belonging to the tribe Kritosaurini. The type species is A. wimani.

Ahvaytum[70]

Gen. et sp. nov

Valid

Lovelace et al.

Late Triassic (Carnian)

Popo Agie Formation

United States
( Wyoming)

An early saurischian, possibly a basal sauropodomorph. The type species is A. bahndooiveche.

Anteavis[71]

Gen. et sp. nov

Valid

Martínez et al.

Late Triassic (Carnian)

Ischigualasto Formation

Argentina

An early theropod. The type species is A. crurilongus.

Archaeocursor[72]

Gen. et sp. nov

Valid

Yao et al.

Early Jurassic (SinemurianPliensbachian)

Ziliujing Formation

China

A basal ornithischian. The type species is A. asiaticus. Announced in 2024; the final article version was published in 2025.

Astigmasaura[73]

Gen. et sp. nov

Valid

Bellardini et al.

Late Cretaceous (Cenomanian)

Huincul Formation

Argentina

A rebbachisaurid sauropod. The type species is A. genuflexa.

Athenar[74] Gen. et sp. nov Valid Whitlock et al. Late Jurassic (Tithonian) Morrison Formation United States
( Utah)
A dicraeosaurid sauropod. The type species is A. bermani.

Brontotholus[75]

Gen. et sp. nov

Valid

Woodruff et al.

Late Cretaceous (Campanian)

Two Medicine and Oldman formations

United States
( Montana)
Canada
( Alberta)

A pachycephalosaur belonging to the subfamily Pachycephalosaurinae. The type species is B. harmoni.

Cariocecus[76]

Gen. et sp. nov

Valid

Bertozzo et al.

Early Cretaceous (Barremian)

Papo Seco Formation

Portugal

A hadrosauroid ornithopod. The type species is C. bocagei.

Chadititan[77]

Gen. et sp. nov

Valid

Agnolín et al.

Late Cretaceous (Campanian)

Anacleto Formation

Argentina

A rinconsaurian titanosaur. The type species is C. calvoi.

Cienciargentina[78]

Gen. et sp. nov

Valid

Simón & Salgado

Late Cretaceous (Cenomanian-Turonian)

Huincul Formation

Argentina

A rebbachisaurid sauropod. The type species is C. sanchezi.

Duonychus[79]

Gen. et sp. nov

Valid

Kobayashi et al.

Late Cretaceous (CenomanianConiacian)

Bayanshiree Formation

Mongolia

A therizinosaurid theropod. The type species is D. tsogtbaatari.

Dzharacursor[80]

Gen. et comb. nov

Valid

Averianov & Sues

Late Cretaceous (Turonian)

Bissekty Formation

Uzbekistan

An ornithomimid theropod. The type species is "Archaeornithomimus" bissektensis Nesov (1995).

Emiliasaura[81]

Gen. et sp. nov

Valid

Coria et al.

Early Cretaceous (Valanginian)

Mulichinco Formation

Argentina

An ornithopod belonging to the group Rhabdodontomorpha. The type species is E. alessandrii. Announced in 2024; the final article version was published in 2025.

Enigmacursor[82]

Gen. et sp. nov

Valid

Maidment & Barrett

Late Jurassic (KimmeridgianTithonian)

Morrison Formation

United States
( Colorado)

A non-cerapodan neornithischian. The type species is E. mollyborthwickae.

Huadanosaurus[83]

Gen. et sp. nov

Valid

Qiu et al.

Early Cretaceous (Barremian)

Yixian Formation

China

A compsognathid-like theropod belonging to the group Sinosauropterygidae. The type species is H. sinensis.

Huashanosaurus[84]

Gen. et sp. nov

Valid

Mo et al.

EarlyMiddle Jurassic

Wangmen Formation

China

A basal eusauropodan sauropod. The type species is H. qini.

Huayracursor[85]

Gen. et sp. nov

Valid

Hechenleitner et al.

Late Triassic (Carnian)

Santo Domingo Formation

Argentina

A basal sauropodomorph. The type species is H. jaguensis.

Istiorachis[86] Gen. et sp. nov Valid Lockwood, Martill, & Maidment Early Cretaceous (Barremian) Wessex Formation United Kingdom A styracosternan ornithopod. The type species is I. macarthurae.

Jinchuanloong[87]

Gen. et sp. nov

Valid

Li et al.

Middle Jurassic (Bathonian)

Xinhe Formation

China

A basal eusauropodan sauropod. The type species is J. niedu.

Joaquinraptor[88]

Gen. et sp. nov

Valid

Ibiricu et al.

Late Cretaceous (Maastrichtian)

Lago Colhué Huapí Formation

Argentina

A megaraptorid theropod. The type species is J. casali.

Khankhuuluu[89]

Gen. et sp. nov

Valid

Voris et al.

Late Cretaceous (TuronianSantonian)

Bayanshiree Formation

Mongolia

A tyrannosauroid theropod. The type species is K. mongoliensis.

Maleriraptor[90]

Gen. et sp. nov

Valid

Ezcurra et al.

Late Triassic (Norian)

Upper Maleri Formation

India

A herrerasaurian saurischian. The type species is M. kuttyi.

Mamenchisaurus sanjiangensis[91]

Sp. nov

Valid

Dai et al.

Late Jurassic (?early Oxfordian)

Shaximiao Formation

China

A mamenchisaurid sauropod; a species of Mamenchisaurus.

Manipulonyx[92]

Gen. et sp. nov

Valid

Averianov, Lopatin & Atuchin

Late Cretaceous (Maastrichtian)

Nemegt Formation

Mongolia

A parvicursorine alvarezsaurid theropod. The type species is M. reshetovi.

Mexidracon[93]

Gen. et sp. nov

Valid

Serrano-Brañas et al.

Late Cretaceous (Campanian)

Cerro del Pueblo Formation

Mexico

An ornithomimid theropod. The type species is M. longimanus.

Nanotyrannus lethaeus[94]

Sp. nov

Valid

Zanno & Napoli

Late Cretaceous (Maastrichtian)

Hell Creek Formation

United States
( Montana)

A tyrannosauroid theropod; a species of Nanotyrannus.

Newtonsaurus[95]

Gen. et comb. nov

Valid

Evans et al.

Late Triassic (Rhaetian)

Lilstock Formation

United Kingdom

A basal theropod. The type species is "Zanclodon" cambrensis (Newton, 1899).

Obelignathus[96]

Gen. et comb. nov

Valid

Czepiński & Madzia

Late Cretaceous (Campanian-Maastrichtian)

Argiles et Grès à Reptiles Formation

France

An ornithopod belonging to the group Rhabdodontomorpha. The type species is "Rhabdodon" septimanicus Buffetaut & Le Loeuff (1991).

Paulodon[97]

Gen. et comb. nov

Sancarlo, Mandorlo & Ford

Early Cretaceous (Barremian)

Camarillas Formation

Spain

A styracosternan ornithopod. The type species is "Iguanodon" galvensis Verdú et al. (2015).

Petrustitan[98]

Gen. et comb. nov

Valid

Díez Díaz et al.

Late Cretaceous (Maastrichtian)

Sînpetru Formation

Romania

A titanosaur sauropod. The type species is "Magyarosaurus" hungaricus Huene (1932).

Pulaosaurus[99]

Gen. et sp. nov

Valid

Yang, King & Xu

Jurassic (Callovian-Oxfordian)

Tiaojishan Formation

China

An early-diverging neornithischian. The type species is P. qinglong.

Qianjiangsaurus[100]

Gen. et sp. nov

Valid

Dai et al.

Late Cretaceous

Zhengyang Formation

China

An early-diverging hadrosauromorph. The type species is Q. changshengi. Announced in 2024; the final article version was published in 2025.

Shri rapax[101]

Sp. nov

Valid

Moutrille et al.

Late Cretaceous

Djadochta Formation

Mongolia

A dromaeosaurid theropod; a species of Shri.

Sinosauropteryx lingyuanensis[83]

Sp. nov

Valid

Qiu et al.

Early Cretaceous (Barremian)

Yixian Formation

China

A compsognathid-like theropod; a species of Sinosauropteryx.

Taleta[102]

Gen. et sp. nov

Valid

Longrich et al.

Late Cretaceous (Maastrichtian)

Ouled Abdoun Basin

Morocco

A lambeosaurine hadrosaurid belonging to the tribe Arenysaurini. The type species is T. taleta.

Tameryraptor[103]

Gen. et sp. nov

Valid

Kellermann, Cuesta & Rauhut

Late Cretaceous (Cenomanian)

Bahariya Formation

Egypt

A carcharodontosaurid theropod. The type species is T. markgrafi.

Tongnanlong[104]

Gen. et sp. nov

Valid

Wei et al.

Late Jurassic

Suining Formation

China

A mamenchisaurid sauropod. The type species is T. zhimingi.

Uriash[98]

Gen. et sp. nov

Valid

Díez Díaz et al.

Late Cretaceous (Maastrichtian)

Densuș-Ciula Formation

Romania

A titanosaur sauropod. The type species is U. kadici.

Utetitan[105]

Gen. et sp. nov

Valid

Paul

Late Cretaceous (Maastrichtian)

North Horn, Black Peaks, and possibly Javelina formations

United States
( Utah, Texas)

A titanosaur sauropod. The type species is U. zellaguymondeweyae.

Vitosaura[106]

Gen. et sp. nov

Valid

Jiménez Velandia et al.

Late Cretaceous (possibly Campanian)

Los Llanos Formation

Argentina

An abelisaurid theropod. The type species is V. colozacani.

Wudingloong[107]

Gen. et sp. nov

Valid

Wang et al.

Early Jurassic (Hettangian to Sinemurian)

Yubacun Formation

China

A massopodan sauropodomorph. The type species is W. wui.

Xingxiulong yueorum[108]

Sp. nov

Valid

Chen et al.

Early Jurassic

Lufeng Formation

China

A massopodan sauropodomorph; a species of Xingxiulong.

Yuanmouraptor[109]

Gen. et sp. nov

Valid

Zou et al.

Middle Jurassic

Zhanghe Formation

China

A metriacanthosaurid theropod. The type species is Y. jinshajiangensis.

Yuanyanglong[110]

Gen. et sp. nov

Valid

Hao et al.

Early Cretaceous

Miaogou Formation

China

An oviraptorosaurian theropod. The type species is Y. bainian. Announced in 2024; the final article version was published in 2025.

Zavacephale[111]

Gen. et sp. nov

Valid

Chinzorig et al.

Early Cretaceous (AptianAlbian)

Khuren Dukh Formation

Mongolia

A basal pachycephalosaur. The type species is Z. rinpoche.

Zhongyuansaurus junchangi[112]

Sp. nov

Valid

Zhang et al.

Early Cretaceous

Haoling Formation

China

An ankylosaurid; a species of Zhongyuansaurus.

General non-avian dinosaur research

  • Maidment and Butler (2025) review the state of dinosaur taxonomy and attempt to determine the geographical areas and time periods likely to offer the best opportunities for major new discoveries.[113]
  • Heath et al. (2025) use historical biogeographic estimation methods to estimate the distribution of early dinosaurs and their relatives, and consider low-latitude Gondwana to be the most likely area of origin of dinosaurs, and possibly of archosaurs in general.[114]
  • Sen, Bagchi & Ray (2025) study the biogeography of Late Triassic dinosaurs, and interpret the fossil record as consistent with South American origin of dinosaurs followed by simultaneous dispersals into Laurasia and east Gondwana.[115] This was reassessed by Müller et al. (2025), who recognize that methodological issues in the original analysis—particularly inadequate search parameters, matrix design, and outgroup sampling—render its conclusions about dinosaur origins unreliable.[116]
  • Dempsey et al. (2025) review the utility of methods used to estimate body mass of extinct tetrapods, and present new estimates of body segment mass properties of 52 non-avian dinosaurs.[117]
  • Evidence from the study of extant tetrapods and non-avian dinosaurs, indicative of a link between mass distribution and robusticity of the humeral shaft relative to the femoral shaft which can be used to determine mass distribution in fossil tetrapods, is presented by Dempsey et al. (2025).[118]
  • Aureliano et al. (2025) compare the microstructure of appendicular bones in non-avian dinosaurs and large-bodied mammals, and interpret it as indicating that gigantism was achieved through divergent evolutionary pathways in the two groups.[119]
  • Jensen et al. (2025) comment on the studies on brain neuron counts of dinosaurs and their possible cognition published by Herculano-Houzel (2023)[120] and Caspar et al. (2024),[121] support the existence of a link between telencephalic neuron counts and cognitive performance, consider the estimates of neuron counts from both studies to be uncertain, and argue that shift towards endothermy in dinosaurs and related increase of their energetic needs might have been linked to cognitive evolution, referring to the endothermic brain hypothesis formulated by Osvath et al. (2024);[122][123] in response Caspar et al. (2025) reaffirm the conclusions of their 2024 study, argue that the fossil record does not confirm coevolution of endothermy with enlarged brains or elevated neuron densities, and argue that high neuron number estimates for Mesozoic dinosaurs might have explanasions that are unrelated to their cognitive abilities.[124]
  • Review of sources of information about dinosaur locomotion, and of studies of dinosaur locomotion from the preceding years, is published by Falkingham (2025).[125]
  • Prescott et al. (2025) reevaluate the accuracy of equations used to calculate speed of dinosaurs from fossil trackways, and find that none of the equations accurately predicted speed of extant helmeted guinea fowl from tracks made in mud.[126]
  • Baumgart et al. (2025) review the utility of methods used in the studies of dinosaur thermoregulation and respiratory, cardiovascular and digestive systems.[127]
  • Review of studies of dinosaur reproduction and ontogeny, and of challenges in the studies of dinosaur reproductive biology, is published by Chapelle, Griffin & Pol (2025).[128]
  • Holtz (2025) argues that, because of ontogenetic niche shifts during the life of non-avian dinosaurs, the functional richness of their communities might have exceeded functional richness of Cenozoic mammalian communities.[129]
  • Schweitzer et al. (2025) study the composition of vascular-like microstructures isolated from dinosaur fossils from the Judith River and Hell Creek formations, and interpret their findings as supporting endogeneity of the studied structures, but also report the presence of microorganismal components in the studied samples.[130]
  • Evidence of preservation of heme bound to a protein moiety in tissues of specimens of Brachylophosaurus canadensis and Tyrannosaurus rex is presented by Long et al. (2025).[131]
  • Evidence of the presence of a strong connective tissue in the cheek region of dinosaur skulls, linking the zygoma and mandible in dinosaurs, is presented by Sharpe et al. (2025).[132]
  • Lautenschlager et al. (2025) present evidence indicating that dinosaur skulls evolved towards morphologies that were a compromise of different functions rather than towards functionally optimal proportions, as well as evidence indicating that rostrum was the part of dinosaur skull showing the greatest variability and plasticity.[133]
  • Tucker et al. (2025) determine the ages of dinosaurs eggs from the Cretaceous strata of the Mussentuchit Member of the Cedar Mountain Formation (Utah, United States) and from the Teel Ulaan Chaltsai locality in the Eastern Gobi Basin (Mongolia) on the basis of U-Pb calcite dating and elemental mapping of eggshells, and interpret their findings as indicative of utility of eggshell biocalcite from eggs of dinosaurs and other egg-laying vertebrates as a geochronometer in Mesozoic and Cenozoic terrestrial sedimentary basins.[134]
  • Zhang et al. (2025) interpret secondary eggshell units in eggs of non-avian dinosaurs as biogenic in nature, as interpret their rarity in eggs of maniraptoran theropods as suggestive of a change of the biomineralization mechanism of dinosaur eggshells near the origin of Maniraptora.[135]
  • Review of the fossil record of Triassic-Jurassic dinosaurs and other reptiles from the Connecticut Valley (Connecticut and Massachusetts, United States) is published by Galton, Regalado Fernández & Farlow (2025), who consider Ammosaurus major to be a separate taxon from Anchisaurus polyzelus.[136]
  • McDonald et al. (2025) study the stratigraphy of the Triassic-Jurassic strata of the Hartford and Deerfield basins (Connecticut and Massachusetts) preserving dinosaur tracks, reconstruct the environment in which the tracks were produced (providing evidence of presence of large theropod tracks in lake-margin strata and evidence of presence of large herbivorous dinosaur tracks in areas closer to upland environments), and interpret theropod trackmakers as spending most of their days at lake margins feeding on fishes and smaller tetrapods, while larger herbivores might have lived in upland habitats.[137]
  • Niedźwiedzki et al. (2025) report the discovery of a new, diverse assemblage of theropod and early ornithischian tracks from the Upper Triassic (Norian-Rhaetian transition) strata from the Lisowice-Lipie Śląskie site (Poland), including the biggest theropod tracks from the Upper Triassic of the Central European Basin reported to date.[138]
  • Xing et al. (2025) describe new dinosaur tracksites from the Lower Jurassic Ziliujing Formation (China), including didactyl footprints interpreted as most likely produced by non-didactyl trackmakers while punting or running.[139]
  • Milàn & Vallon (2025) study dinosaur tracks from the Middle Jurassic Bagå Formation (Denmark), interpreted as evidence of presence of a diverse dinosaur fauna unknown from skeletal remains.[140]
  • New tracksites including sauropod tracks and dominated by ornithischian tracks are described from the Middle Jurassic Dansirit Formation (Shemshak Group, Iran) by Xing, Abbassi & Chen (2025).[141]
  • Deiques et al. (2025) report the discovery of new dinosaur tracks from the Upper Jurassic Guará Formation (Brazil), including second record of an ankylosaur track and the best preserved theropod track from the formation reported to date.[142]
  • Evidence from the study of stable calcium isotope data from tooth enamel of dinosaurs from the Carnegie Quarry at Dinosaur National Monument (Morrison Formation; Utah, United States), interpreted as indicating that Allosaurus did not consume significant amounts of bone, as well as indicative of niche partitioning between Camarasaurus and Camptosaurus, is presented by Norris et al. (2025).[143]
  • Leonardi (2025) reviews known record of body and trace fossils of non-avian dinosaurs from the Cretaceous strata in Brazil.[144]
  • Duque et al. (2025) describe the dorsal rib of an indeterminate theropod and two new footprints from the Lower Cretaceous Antenor Navarro Formation (Triunfo Basin, Brazil).[145]
  • Mao et al. (2025) describe a new nest with dinosaur eggs from the Lower Cretaceous Xintan Formation (Anhui, China), and name a new faveoloolithid oospecies Parafaveoloolithus wannanensis.[146]
  • He et al. (2025) describe a new clutch of dinosaur eggs from the Upper Cretaceous Zhaoying Formation (Henan, China), name a new oospecies Parafaveoloolithus xixiaensis, and transfer the oospecies "Dendroolithus" guoqingsiensis to the oogenus Propagoolithus and "Duovallumoolithus" shangdanensis to the oogenus Parafaveoloolithus.[147]
  • Romilio et al. (2025) reconstruct an ornithopod trackway from the Lower Cretaceous strata from the Browns Creek tracksite (Eumeralla Formation; Victoria, Australia), and report the discovery of new theropod tracks from the same track horizon.[148]
  • A new assemblage of dinosaur tracks, including sauropod tracks and possible tracks of bipedal dinosaurs, is described from the Lower Cretaceous (Albian) strata of the Madongshan Formation from the Yaoshan site (China) by Yang et al. (2025).[149]
  • Carrano (2025) identifies the first tyrannosauroid and neoceratopsian fossil material from the Lower Cretaceous Newark Canyon Formation (Nevada, United States).[150]
  • Xing et al. (2025) describe new dinosaurs tracks from the Cretaceous (Albian to Coniacian) strata of the Shaxian Formation at the Longxiang site (Fujian, China) and review known record of dinosaur tracks from this site, confirming that the studied track assemblage is dominated by tracks produced by ankylopollexian ornithopods, but also includes theropod (including probable large-bodied deinonychosaur) and sauropod tracks.[151]
  • Chen et al. (2025) determine the age of dendroolithid eggs from the Coniacian-Santonian strata from the Tumiaoling Dinosaur Egg Fossil Locality in Qinglongshan (Hubei, China) on the basis of U-Pb dating of calcite samples identified within the eggs.[152]
  • New assemblage of dinosaur footprints, including ceratopsid, tyrannosaurid, probable ankylosaurian and small theropod-like footprints, is described from the Campanian Dinosaur Park Formation (Alberta, Canada) by Bell et al. (2025).[153]
  • Yu et al. (2025) report the discovery of new tyrannosaurid, dromaeosaurid (dromaeosaurine and velociraptorine), titanosaur and hadrosauroid teeth from the Upper Cretaceous Nenjiang Formation, providing new information on the diversity of Late Cretaceous dinosaurs from the Songliao Basin (China).[154]
  • A study on habitat preferences of Campanian and Maastrichtian dinosaurs from south-western Europe is published by Vázquez López et al. (2025).[155]
  • Van Der Linden et al. (2025) provide the first description of a fragment of a dinosaur eggshell from the Maastrichtian Lance Formation (Wyoming, United States), assigned to the oofamily Ovaloolithidae and produced either by a theropod or by an ornithopod.[156]
  • A study on the structure of the latest Cretaceous dinosaur fossil record from North America is published by Dean et al. (2025), who argue that research on diversity dynamics of dinosaurs before the Cretaceous–Paleogene extinction event is hampered by geological sampling biases.[157]
  • Flynn et al. (2025) determine the strata of the Naashoibito Member of the Kirtland/Ojo Alamo Formation (New Mexico, United States) preserving non-avian dinosaur fossils to be latest Maastrichtian in age, and interpret this finding as indicative of high diversity of North American dinosaurs living before the Cretaceous–Paleogene extinction event, as well as indicating that Maastrichtian dinosaur faunas from Laramidia were not uniform in the entire continent.[158]
  • Weaver et al. (2025) link the widespread facies shifts in western North America during the Cretaceous–Paleogene transition to the Cretaceous–Paleogene extinction event, arguing that non-avian dinosaurs likely promoted open habitats and that their extinction might have resulted in widespread emergence of dense forest cover.[159]

Saurischian research

  • Garcia, Martínez & Müller (2025) identify pathological marks on the skull bones of herrerasaurid specimens representing the oldest record of pathologies in dinosaurs reported to date, and interpret those lesions as likely resulting from agonistic behaviour of the studied dinosaurs.[160]
  • Theropod and sauropod trace fossils, including possible drag marks and evidence of trampling, are described from the Lower Jurassic Kota Formation (India) by Rozario & Dasgupta (2025).[161]
  • New assemblage of theropod and sauropod tracks produced in a lagoonal margin environment is described from the Middle Jurassic Kilmaluag Formation (United Kingdom) by Blakesley et al. (2025).[162]
  • Gesualdi et al. (2025) describe sauropod and theropod tracks from the Upper Jurassic – Lower Cretaceous Chacarilla Formation (Chile), providing evidence of presence of small, medium and large-bodied theropod in the subtropical arid environments of Gondwana during the Jurassic-Cretaceous transition.[163]
  • A study on the purported swimming sauropod trail from the Mayan Dude Ranch tracksite in the Lower Cretaceous Glen Rose Formation (Texas, United States), as well as on the second manus-dominated sauropod trackway and on the theropod track from the same track horizon, is published by Adams et al. (2025), who interpret the studied tracks as unlikely to be produced by dinosaurs that buoyed in deep water.[164]
  • A tooth of a theropod distinct from Sinotyrannus, as well as a titanosauriform tooth representing the youngest sauropod fossil from the Jehol Biota reported to date, are described from the Lower Cretaceous Jiufotang Formation (China) by Yin et al. (2025).[165]
  • Olmedo-Romaña et al. (2025) describe fossil material of dinosaurs from the Campanian-Maastrichtian strata of the Fundo El Triunfo Formation (Peru), including postcranial remains of titanosaur sauropods and theropod teeth which might represent the youngest record of spinosaurids reported to date and the first record of the group from western South America;[166] their conclusions are disputed by Barker, Naish and Gostling (2025), who argue that these teeth lack key features of spinosaurid dentition, and that they most likely represent crocodylomorph teeth.[167]
  • Marković et al. (2025) report the discovery of theropod and sauropod fossil material from the Maastrichtian strata from the Osmakovo fossil site, representing the first body fossils of non-avian dinosaurs reported from Serbia.[168]

Theropod research

  • A study on the shape and growth of snouts and beaks of extinct theropods and extant birds, providing evidence of a conserved growth pattern of the rostrum throughout the evolutionary history of theropods, is published by Garland et al. (2025).[169]
  • Marques et al. (2025) compare the performance of different machine learning models used for identification of isolated theropod teeth.[170]
  • Theropod tracks assigned to three co-occurring ichnotaxa are described from the Lower Jurassic strata of the Peyre site (Causses Basin, France) by Moreau, Sciau & Jean (2025).[171]
  • Xing et al. (2025) describe new theropod trace fossils from the Lower Jurassic strata from the Wuli site (Ziliujing Formation; Sichuan, China), including probable tail drag impressions interpreted as possible evidence of vigilant or aggressive behavior of the tracemakers.[172]
  • Tracks produced by both large and multiple smaller-bodied theropods are described from the Middle Jurassic strata of the Valtos Sandstone and Kilmaluag formations (Scotland, United Kingdom) by Blakesley et al. (2025).[173]
  • Yurac et al. (2025) identify theropod tracks representing at least five different morphotypes in the strata of the Oxfordian Majala Formation in the Quebrada Huatacondo area (Chile).[174]
  • Piñuela et al. (2025) report the discovery of a theropod footprint preserved with a detached sandstone undertrack from the Upper Jurassic Lastres Formation (Spain), providing evidence of foot movement through the sediment and evidence of changes of footprint morphology at different levels of sediment depth, with some of the successive footprint outlines showing similarities to footprints of members of different dinosaur groups; the authors also reevaluate the type series of the ichnotaxon Iguanodontipus, and argue that some of the studied footprints might have been produced by a theropod.[175]
  • A study on the taxonomic composition of the assemblage of isolated theropod teeth from the Upper Jurassic strata from the Andrés fossil site (Portugal) is published by Malafaia et al. (2025).[176]
  • Evidence of distinct wear surfaces in isolated theropod teeth from the Andrés fossil site is presented by Batista et al. (2025).[177]
  • Reolid & Cardenal (2025) describe theropod tracks from the Berriasian strata of the Internal Prebetic of Sierra del Pozo (Jaén, Spain), representing the first dinosaur tracks from the South-Iberian Palaeomargin reported to date.[178]
  • Figueiredo (2025) describes new theropod tracks from the Lower Cretaceous (Barremian) Papo Seco Formation (Portugal), representing morphotypes different from tracks from the underlying layers of the Areia do Mastro Formation.[179]
  • Li et al. (2025) calculate speed of the mid-sized theropod that was the producer of a trackway of eubrontid footprints from the Jingchuan Formation (China), interpreted as the fastest-running Cretaceous theropod documented to date.[180]
  • Xing et al. (2025) describe a new assemblage of theropod tracks from the Lower Cretaceous Hekou Group (Gansu, China), reporting morphological variation of the studied tracks within a small area interpreted as resulting from varied track preservation.[181]
  • Buntin et al. (2025) report the discovery of new mating display scrapes of theropods from the Cenomanian strata of the Dakota Sandstone at Dinosaur Ridge (Colorado, United States), and interpret the site preserving the studied traces as likely to be a lek site.[182]
  • Evidence from the study of theropod tracks from the Maastrichtian strata from the Torotoro National Park (Bolivia), indicating that the formation of tail traces associated with the studied trackways was related to walking kinematics of theropods in soft substrate, is presented by McLarty et al. (2025).[183]
  • Esperante et al. (2025) study theropod trace fossils from the Carreras Pampa tracksite from the Torotoro National Park, identifying 11 morphotypes for walking tracks and 3 morphotypes for swim tracks, and determine walking and swimming behaviors of the trackmakers.[184]
  • Indeterminate theropod phalanges with similarities to phalanges of digging mammals are described from the Turonian Bissekty Formation (Uzbekistan) by Averianov (2025).[185]
  • Ősi, Kolláti & Nagy (2025) report evidence of greater diversity of teeth of Late Cretaceous theropods from Central Europe than recognized in earlier studies, and interpret the studied teeth of large tetanurans as indicative of feeding patterns similar to those of the Komodo dragon.[186]
  • A new theropod specimen, likely distinct from Sinosaurus triassicus and Shuangbaisaurus anlongbaoensis and related to averostrans, is described from the Lower Jurassic Lufeng Formation (China) by Li et al. (2025).[187]
  • Cau & Paterna (2025) describe new theropod fossil material from the Kem Kem Group (Morocco) and revise Bahariasaurus and Deltadromeus, interpreting the former taxon as an abelisauroid showing convergences with the ornithomimosaurs and a senior synonym of the latter taxon; the authors also confirm that the fossil material originally attributed to Kryptops palaios includes both abelisaurid and allosauroid remains, and argue that the fossil material originally attributed to Eocarcharia dinops includes both spinosaurid and allosauroid remains.[188]
  • Rocha et al. (2025) describe an isolated abelisauroid teeth from the Cenomanian Açu Formation (Brazil), including a probable noasaurid tooth representing the first record of the group from the Potiguar Basin.[189]
  • Evidence from the study of a new dentary of Berthasaura leopoldinae, indicating that this theropod lost its teeth during its ontogeny, is presented by Pierossi et al. (2025).[190]
  • A study on bone histology of Ceratosaurus, providing evidence of faster growth rate than in Late Cretaceous members of Ceratosauria, is published by Sombathy, O'Connor & D'Emic (2025).[191]
  • A study on the body size evolution in Ceratosauria, providing evidence of a trend towards decreased body size in noasaurids and of constraints on the increase of body size in abelisaurids, is published by Seculi Pereyra, Pérez & Méndez (2025).[192]
  • Souza et al. (2025) study the bone histology of Berthasaura leopoldinae, reporting evidence of a significant intra-skeletal variation, and interpret the holotype specimen as a subadult individual.[193]
  • Ribeiro et al. (2025) study the affinities of isolated theropod teeth from the Cretaceous Açu Formation (Brazil), reporting the first noasaurid record for the studied formation and identifying four morphotypes of abelisaurid teeth, interpreted as possible evidence of predominance of abelisaurids in the theropod assemblage found in the studied formation.[194]
  • A study on the maxillary shape of abelisaurids and its relation to feeding ecology is published by Seculi Pereyra et al. (2025), who find evidence of morphological similarities between the maxillae of Spectrovenator and Late Cretaceous abelisaurids, interpreted as likely to be specialist hunters holding and killing prey with their jaws.[195]
  • A study on the evolution of the abelisaurid skull morphology is published by Pereyra et al. (2025).[196]
  • Seculi Pereyra (2025) studies the evolution of abelisaurid orbit shape, interpreted as more likely influenced by selective pressures such as those related to specialized predation than by phylogenetic constraints.[197]
  • Hendrickx et al. (2025) revise the fossil record of isolated abelisaurid teeth from the Jurassic and Cretaceous strata from Gondwana, identify abelisaurid teeth in the Bathonian Sakaraha Formation (Madagascar) and in the Upper Jurassic Tacuarembó Formation (Uruguay), and study the evolution of abelisaurid tooth morphology.[198]
  • A study on the microstructure of teeth and periodontium of an abelisaurid specimen from the Candeleros Formation (Argentina), providing evidence of patterns of tooth formation and replacement in abelisaurids that were comparable with those of other amniotes, is published by Cerda & Porfiri (2025).[199]
  • An abelisaurid humerus with the morphology intermediate between those of noasaurids and those of Campanian-Maastrichtian abelisaurids is described from the Santonian Bajo de la Carpa Formation (Argentina) by Méndez et al. (2025).[200]
  • Paulina-Carabajal et al. (2025) describe abelisaurid remains representing the first theropod fossils from the Upper Cretaceous Angostura Colorada and Coli Toro formations (Argentina).[201]
  • Isasmendi & Malafaia (2025) attribute isolated theropod teeth from the late Campanian Chera 2 (Valencia), early Maastrichtian Montrebei (Lleida) and Campanian–Maastrichtian Viso (Beira Litoral) localities in the Iberian Peninsula to abelisaurids, interpret the theropod tooth from the Cenomanian La Manjoya Formation with possible affinities to Carcharodontosauridae reported by Ruiz Omeñaca et al. (2009)[202] as more likely to be an abelisaurid tooth, and interpret the fossil record as indicating that carcharodontosaurians were likely extinct in Ibero-Armorica by the Cenomanian, with abelisaurids taking over as apex predators in those ecosystems.[203]
  • Buffetaut (2025) revises the type material of Genusaurus sisteronis and identifies anatomical traits suggestive of affinities with furileusaurian abelisaurids.[204]
  • Zurriaguz & Cerroni (2025) study the pneumaticity of bones of the postcranial skeleton of Tralkasaurus cuyi, Skorpiovenator bustingorryi and Carnotaurus sastrei, providing unambiguous evidence of pneumaticity of dorsal vertebrae of T. cuyi, caudal vertebrae of S. bustingorryi and cervical and dorsal ribs of C. sastrei.[205]
  • Redescription of the anatomy of the appendicular skeleton of Piatnitzkysaurus floresi and a study on the phylogenetic affinities of this species is published by Pradelli, Pol & Ezcurra (2025).[206]
  • Theropod teeth identified as belonging to members of the groups Spinosauridae, Metriacanthosauridae, Allosauria and Tyrannosauroidea are described from the Upper Jurassic to Lower Cretaceous Khorat Group (Thailand) by Chowchuvech et al. (2025), who interpret the studied teeth as suggestive of a theropod faunal turnover during the Early Cretaceous.[207]
  • Isasmendi et al. (2025) describe new fossil material of early-branching tetanurans and baryonychine spinosaurids from the Lower Cretaceous Golmayo Formation (Spain), including a large-bodied baryonychine from the Zorralbo I locality.[208]
  • Puntanon & Samathi (2025) review the Cretaceous fossil record of spinosaurids from Asia.[209]
  • Puntanon, Suteethorn & Samathi (2025) describe spinosaurid teeth from Hin Lat Yao locality (Sao Khua Formation, Thailand), tentatively identified as belonging to a taxon distinct from Siamosaurus.[210]
  • Rauhut, Canudo & Castanera (2025) revise the fossil material originally attributed to Camarillasaurus cirugedae and new fossil material from its type locality, interpret C. cirugedae as a spinosaurine spinosaurid, recover Iberospinus and Vallibonavenatrix as members of Spinosaurinae, and consider Protathlitis cinctorrensis to be a probably chimeric nomen dubium of uncertain affinities.[211]
  • Evidence indicating that oxygen isotope composition in tooth dentine of Spinosaurus aegyptiacus can be used as a proxy for environmental reconstructions is presented by Liu et al. (2025), who record oxygen isotope variability in the dentine of the studied theropod, interpreted as likely reflecting seasonal environmental changes.[212]
  • Description of new fossil material of Allosaurus from the Andrés fossil site (Portugal) and a taxonomic revision of this genus is published by Malafaia et al. (2025), who interpret A. fragilis and A. jimmadseni as the only valid species of Allosaurus from the Late Jurassic of North America, and consider the holotype of Allosaurus europaeus to be a specimen of A. fragilis.[213]
  • Kotevski et al. (2025) describe new fossil material of theropods from the Lower Cretaceous Strzelecki Group and Eumeralla Formation (Australia), including the first carcharodontosaurian fossils from Australia, bones of large-bodied megaraptorids and a tibia of a member of Unenlagiinae.[214]
  • Oswald et al. (2025) revise purported teeth of Acrocanthosaurus from the Sonorasaurus Quarry in the Turney Ranch Formation of Arizona and the Long Walk Quarry in the Ruby Ranch Member of the Cedar Mountain Formation (Utah), describe additional allosauroid teeth from three localities in the Yellow Cat Member of the Cedar Mountain Formation, and interpret the studied fossils as possible evidence of presence of fossil material of up to four carcharodontosaurid taxa in the Cedar Mountain Formation.[215]
  • Averianov et al. (2025) describe a maxilla of a member of the genus Ulughbegsaurus from the Cenomanian Khodzhakul Formation (Uzbekistan), and interpret its morphology as supporting the attribution of Ulughbegsaurus to the family Carcharodontosauridae.[216]
  • A tooth of a carcharodontosaurid related to Giganotosaurus and Mapusaurus is described from the Lower Cretaceous strata of the Itapecuru Formation (Brazil) by França et al. (2025).[217]
  • Calvo et al. (2025) report the first discovery of the humerus of an adult specimen of Megaraptor namunhuaiquii from the Upper Cretaceous Portezuelo Formation (Argentina), and interpret its anatomy as indicating that M. namunhuaiquii and Gualicho shinyae were not closely related.[218]
  • Redescription of the anatomy of the braincase of Megaraptor namunhuaiquii is published by Paulina-Carabajal & Porfiri (2025).[219]
  • A study on the biogeography of Megaraptora and Tyrannosauroidea is published by Morrison et al. (2025), who argue that megaraptorans had a cosmopolitan distribution before the splitting of Laurasia and Gondwana, that gigantism evolved multiple times in tyrannosauroids and its evolution might have been related to cooling climate, and that direct ancestors of Tyrannosaurus likely migrated into North America from Asia.[220]
  • A study on the evolution of adaptations to cursoriality in the hindlimbs of theropod dinosaurs and on the origin of arctometatarsus in members of Coelurosauria is published by Kubo & Kobayashi (2025)[221]
  • Romilio & Xing (2025) study a nearly 70-metres-long theropod trackway (possibly produced by Yutyrannus) from the Cretaceous Jiaguan Formation (China), and present a reconstruction of the locomotion of the trackmaker.[222]
  • Evidence from the study of ceratobranchial (hyoid) histology of the holotype specimen of Nanotyrannus lancensis, indicating that the studied individual was nearing or had reached skeletal maturity, is presented by Griffin et al. (2025), who interpret their findings as supporting the classification of N. lancensis as a taxon distinct from Tyrannosaurus rex.[223]
  • Voris et al. (2025) study changes of the endocranial morphology of Gorgosaurus libratus during its ontogeny, and report that endocasts of juvenile Gorgosaurus show better defined details of the brain morphology compared to mature specimens.[224]
  • Scherer (2025) reeavulates evidence for anagenesis in tyrannosaurine tyrannosaurids, and recovers species belonging to the genus Daspletosaurus as forming an evolutionary grade within Tyrannosaurinae, but does not recover Daspletosaurus as a direct ancestor of Tyrannosaurini.[225]
  • Warner-Cowgill et al. (2025) describe a new specimen of Daspletosaurus from the Judith River Formation (Montana, United States), report evidence of the presence of a combination of anatomical features unknown in other members of the genus, and interpret the anatomy of the specimen as weakening the case that D. wilsoni and D. torosus are distinct species.[226]
  • Coppock et al. (2025) identify the Daspletosaurus specimen CMN 350 from the Dinosaur Park Formation as the first specimen of Daspletosaurus horneri from Alberta (Canada), and study variability of skull characteristics in members of this species.[227]
  • Yun, Delcourt & Currie (2025) study growth trajectories of skull bones of Tarbosaurus bataar, reporting evidence of ontogenetic changes similar to those seen in other tyrannosaurids, as well evidence of presence of variation that wasn't correlated with the size.[228]
  • Mitchell et al. (2025) analyze vessel-like structures within the fractured rib of the RSKM P2523.8 specimen of Tyrannosaurus rex, interpreted as angiogenic blood vessel casts, and interpret their preservation as aided by incomplete healing of the rib fracture.[229]
  • Paul (2025) revises tyrannosaurid fossil material from the Maastrichtian formations of the North American upper plains, and argues that multiple tyrannosaurid species were present in North America during the Latest Cretaceous.[230]
  • Carr (2025) studies the impact of the commercial trade on the sample size of specimens of Tyrannosaurus rex, finds that the rate of discoveries of fossils of T. rex made by commercial companies is higher than that of public trusts, but also reports that commercially collected T. rex fossils mostly remain in private collections or stockrooms, and that there are more fossils of T. rex in private hands than in public trusts.[231]
  • Carr (2025) restudies the holotype skull of Tyrannosaurus rex.[232]
  • Rowe & Rayfield (2025) compare cranial biomechanics of members of different groups of large-bodied theropods, find evidence of elevated cranial stress in tyrannosaurids related to increased head muscle volume and bite forces, unlike other theropods that experienced lower cranial stress, and interpret these differences as likely related to different feeding strategies of tyrannosaurids and other large theropods.[233]
  • Qiu, Wang & Jiang (2025) review the history of discovery, morphology, affinities and ecology of Sinosauropteryx and related theropods.[234]
  • Delcourt et al. (2025) revise the anatomy and affinities of Mirischia asymmetrica and Santanaraptor placidus, and interpret the two taxa as unlikely to be synonymous.[235]
  • Theda et al. (2025) describe a manual ungual and a metatarsal of an indeterminate ornithomimosaur from the Lower Cretaceous (Barremian to Aptian) strata in Balve (northwestern Germany).[236]
  • Isolated dentaries with similarities to bones of deinocheirids are described from the Upper Cretaceous Judith River Formation (Montana, United States) by Chinzorig et al. (2025).[237]
  • Meso et al. (2025) revise alvarezsaurid fossils from the Salitral Ojo de Agua locality (Allen Formation; Río Negro Province, Argentina) described by Salgado et al. (2009)[238] and an alvarezsaurid femur from the same locality originally described as an ornithopod femur by Coria, Cambiaso & Salgado (2007),[239] describe additional alvarezsaurid material from this locality, and interpret the studied fossils as likely bones of Bonapartenykus ultimus, providing new information on the body plan of members of Patagonykinae.[240]
  • A study on pneumatic structures in the vertebrae of cf. Bonapartenykus ultimus from the Allen Formation is published by Windholz et al. (2025).[241]
  • The conclusions of the study on the hearing acuity of Shuvuuia deserti published by Choiniere et al. (2021)[242] are contested by Manley & Köppl (2025).[243]
  • Evidence of carnivory in the holotype of Bannykus is presented by Wang et al. (2025).[244]
  • Evidence from the study of limb morphology of non-avian maniraptorans and birds, interpreted as indicating that evolution of maniraptoran limbs was not solely driven by functional specialization for flight, is presented by Nebreda, Hernández Fernández & Marugán-Lobón (2025).[245]
  • Smith (2025) reconstructs the musculature of the pectoral girdle and forelimbs of Falcarius utahensis.[246]
  • Freimuth & Zanno (2025) describe new cranial material of Falcarius utahensis from the Cedar Mountain Formation (Utah, United States), providing new information on the skull anatomy of members of this species.[247]
  • A model for forelimb function of Nothronychus graffami, based on muscular reconstruction of Smith (2021),[248] is presented by Smith (2025).[249]
  • Napoli et al. (2025) report evidence of presence of a pisiform in two newly prepared pennaraptoran specimens from the Upper Cretaceous strata from the Gobi Desert in Mongolia (Citipati cf. osmolskae and a troodontid), providing evidence of replacement of the ulnare by the pisiform before the origin of birds, and close to the origins of flight in theropods.[250]
  • Evidence indicating that digit loss and reduction of the rest of the forelimb in members of Oviraptorosauria were independent changes resulting from different evolutionary processes is presented by Mead, Funston & Brusatte (2025).[251]
  • Zhu et al. (2025) report the discovery of clutch of elongatoolithid eggs from the Upper Cretaceous Qiupa Formation (China), possibly produced by Yulong mini.[252]
  • Wang et al. (2025) report the discovery of elongatoolithid eggs from the Upper Cretaceous Zhangqiao Formation (Anhui, China), representing the first record of non-avian dinosaur eggs in the Hefei Basin.[253]
  • Foster, Norell & Balanoff (2025) describe two new specimens of Conchoraptor gracilis from the Baruungoyot Formation (Mongolia), present an updated diagnosis for Conchoraptor and differentiate C. gracilis from both Heyuannia yanshini and Khaan mckennai.[254]
  • Zhu et al. (2025) describe a new clutch of eggs assigned to the oospecies Nanhsiungoolithus chuetienensis, interpret the oogenera Montanoolithus, Reticuloolithus and Paraelongatoolithus as junior synonyms of the oogenus Nanhsiungoolithus, and interpret the studied eggs as indicating that dromaeosaurids and oviraptorids might have shared a similar clutch structure.[255]
  • New information on the structure and number of hindwing feathers in Microraptor is presented by Chotard et al. (2025), who report the first evidence of asymmetry of long metatarsal covert feathers in Microraptor, and report evidence of a configuration of feather layers in the hindwing of the studied taxon.[256]
  • Grosmougin et al. (2025) reconstruct the anatomy of the forewing of Microraptor on the basis of data from the study of four known and ten new specimens.[257]
  • Didactyl tracks likely produced by unenlagiine dromaeosaurids, and preserving traces likely left by claw on digit II resting on the substrate, are described from the Candeleros Formation (Argentina) by Heredia et al. (2025).[258]
  • Motta et al. (2025) study the phylogenetic affinities of unenlagiines, recover them as early-diverging members of Avialae, and support the inclusion of all Gondwanan paravians in the group.[259]
  • Description of the skeletal anatomy of Austroraptor cabazai is published by Motta & Novas (2025).[260]
  • Garros et al. (2025) study the histology of troodontid metatarsal bones from the Dinosaur Park Formation (Alberta, Canada), reporting evidence of pathologies in the studied fossil sample, and providing evidence of at least two different growth trajectories in the studied troodontids.[261]
  • Yun (2025) studies mandibular strength properties of troodontids, and interprets his findings as indicating that the anterior part of the snout might have been used for handling and grasping food items.[262]
  • Varricchio, Hogan & Gardner (2025) describe new troodontid material from the Two Medicine Formation (Montana, United States), and interpret Stenonychosaurus inequalis as a junior synonym of Troodon formosus.[263]
  • Evidence of similarities of fusion patterns of the axial column in Troodon formosus and extant emu is presented by Caldwell, Bedolla & Varricchio (2025).[264]
  • The first deinonychosaurian (probably troodontid) track from Japan is described from the Lower Cretaceous Kitadani Formation by Tsukiji, Hattori & Azuma (2025).[265]
  • Kiat et al. (2025) provides new information on the wing structure of Anchiornis huxleyi, report evidence of an irregular molt, and interpret the studied theropod as likely flightless.[266]
  • García-Gil et al. (2025) identify isolated theropod teeth from the Upper Cretaceous El Gallo Formation (Mexico) as belonging to dromaeosaurids, troodontids, maniraptorans of uncertain affinities and indeterminate theropods.[267]
  • Evidence from the study of isolated theropod teeth from the Molí del Baró-1 locality (Catalonia, Spain), interpreted as indicative of previously unrecognized diversity of paravians from the Ibero-Armorican island during the latest Cretaceous and of diverse feeding styles of the studied theropods, is presented by Castillo-Visa et al. (2025).[268]

Sauropodomorph research

  • Evidence from the study of vertebral columns of early-branching sauropodomorphs, interpreted as indicative of independent evolution of postcranial skeletal pneumaticity in sauropodomorphs, theropods and pterosauromorphs, is presented by Beeston et al. (2025).[269]
  • A study on the evolution of the morphology of the sauropodomorph astragalus, providing evidence of stepwise appearance of features seen in sauropods, is published by Lefebvre et al. (2025).[270]
  • Filek et al. (2025) calculate striking energy of the tail of Plateosaurus trossingensis, and argue that the tail of Plateosaurus could have been used for active defence.[271]
  • Description of a well-preserved specimen of Plateosaurus trossingensis from the Upper Triassic Klettgau Formation (Switzerland), preserving evidence of a pathology of its right scapula and humerus, is published by Dupuis et al. (2025), who diagnose the studied individual as likely affected by a chronic case of osteomyelitis.[272]
  • A study on the anatomy of the appendicular skeleton of Macrocollum itaquii is published by Fonseca, Bem & Müller (2025).[273]
  • Lania, Pabst & Scheyer (2025) describe the skull of a probable new massopodan taxon from the Late Triassic Klettgau Formation (Switzerland).[274]
  • Peyre de Fabrègues et al. (2025) describe new fossil material of Leyesaurus marayensis from the Balde de Leyes Formation (Argentina) and revise the anatomy of the holotype specimen of this species, identifying the holotype as a likely juvenile specimen.[275]
  • Mooney et al. (2025) describe fossil material of Massospondylus from the Lower Jurassic strata of the upper Elliot Formation (South Africa and Lesotho) including embryos within eggs and a hatchling, providing new information on the ontogeny of Massospondylus, and interpret the studied fossils as indicating that Massospondylus was quadrupedal during its early ontogeny and shifted to bipedalism later in life.[276]
  • Probable sauropodomorph (possibly basal sauropod) tracks are described from a new tracksite from the Norian Shahmirzad Formation (Shemshak Group; Iran) by Abbassi, Gharehbaghi & Maleki (2025).[277]
  • Toefy, Krupandan & Chinsamy (2025) study the bone histology of two sauropodiform specimens and one early sauropod from the Elliot Formation (South Africa), providing evidence that the three studied specimens underwent rapid growth but differed in the duration of uninterrupted growth, and argue that the change of growth dynamics throughout the evolutionary history of sauropodomorphs was more complex than a simple progression from slow, interrupted growth to fast, uninterrupted growth.[278]
  • Partial skull of an early member of Sauropodiformes, with long, sauropod-like teeth, is described from the Lower Jurassic Lufeng Formation (China) by Sundgren et al. (2025).[279]
  • Evidence of differences in dentition of Early Jurassic sauropods from the Cañadón Asfalto Formation (Argentina), possibly indicative of different feeding strategies and niche partitioning between sauropods from this formation, is presented by Gomez (2025).[280]
  • Description of the anatomy of the appendicular skeleton of Bagualia alba is published by Gomez et al. (2025), who also study morphological diversity of sauropodomorphs throughout their evolutionary history, and report evidence of shifts in morphospace occupation during the Jurassic related to the diversification of early sauropods and extinction of other sauropodomorphs, as well as to subsequent diversification of Neosauropoda.[281]
  • Gomez et al. (2025) reconstruct the brain and inner ear of Bagualia alba, and interpret their anatomy as indicative of gradual sensory changes during sauropod evolution.[282]
  • Ren et al. (2025) interpret the restricted distribution of mamenchisaurids in eastern China during the Late Jurassic and their migrations to other regions as possibly linked to environmental changes resulting from volcanic activity in the Tunxi Basin (China).[283]
  • Kaikaew, Suteethorn & Chinsamy (2025) describe a pathologic mamenchisaurid ulna from the Early Cretaceous Phu Kradung Formation (Thailand), and diagnose the studied specimen as affected by an osteogenic tumor.[284]
  • Yang et al. (2025) study the bone histology of Mamenchisaurus guangyuanensis.[285]
  • Saleiro & Tschopp (2025) describe a previously unstudied collection of sauropod teeth from the Upper Jurassic strata in Portugal, identified as belonging to members of Turiasauria, Flagellicaudata, Camarasauridae and Titanosauriformes.[286]
  • Winkler et al. (2025) study tooth wear in Late Jurassic sauropods from Portugal, Tanzania and United States, and interpret their findings as consistent with a narrow dietary niche of camarasaurids and likely with their seasonal migrations following the availability of their preferred food source, with niche differentiation between camarasaurids and turiasaurs in Portugal, with a broad dietary niche and seasonal variation in diet in diplodocoids (possibly linked to limited migration compared to camarasaurids), and with consumption of food including more abrasives (possibly stemming from a nearby desert) by titanosauriforms from Tanzania compared to the ones from Portugal.[287]
  • Sauropod teeth identified as the oldest turiasaurian fossils from Africa reported to date are described from the Middle Jurassic El Mers III Formation (Morocco) by Woodruff et al. (2025).[288]
  • Lee & Slowiak (2025) propose a methodology to determine the preferred walking speeds of sauropods, focused on Diplodocus, Brachiosaurus, and Argentinosaurus.[289]
  • Dinosaur tracks from the Kimmeridgian strata from the Villette tracksite (France), sharing similarities with tracks attributed to thyreophorans, are identified as more likely to be tracks of a small-bodied sauropod by Sciscio et al. (2025).[290]
  • Mannion & Moore (2025) study the anatomy and phylogenetic relationships of Tharosaurus indicus, finding no evidence confirming its purported diplodocoid affinities, and reevaluate the phylogenetic relationships of diplodocoid sauropods.[291]
  • Eiamlaor et al. (2025) study pneumatic structures of cervical vertebrae of Phuwiangosaurus and a diplodocoid from the Sao Khua Formation (Thailand), and propose that Phuwiangosaurus was a titanosauriform more closely related to brachiosaurids than to Somphospondyli.[292]
  • Evidence from the microscopic analysis of cervical vertebra of Diplodocus and Apatosaurus and from the analysis of gross-scale structures in the cervical vertebra of Diplodocus, Apatosaurus and Camarasaurus, interpreted as suggestive of presence of a supraspinal ligament system as well as an interlaminar elastic ligament system in sauropod necks, is presented by Williams & Harris (2025).[293]
  • Review of history of studies on diplodocoid sauropods and of status of research on their phylogeny, morphology, ecology, ontogeny and biogeography is published by van der Linden et al. (2025).[294]
  • Bivens, Greenfield & Curtice (2025) determine that the sauropod name "Barosaurus africanus var. gracilis", though originally nomenclaturally unavailable, was made available as a subspecies name by Chure & McIntosh (1989),[295] tentatively classify the sauropod as a species of Tornieria (T. gracilis) and designate a lectotype for this species.[296]
  • Gallagher et al. (2025) report evidence of preservation of microbodies within epidermis in the scales of juvenile specimens of Diplodocus sp. from the Mother's Day Quarry, (Morrison Formation; Montana, United States), identified as probable fossil melanosomes.[297]
  • A revision of the known material assigned to the genus Haplocanthosaurus is published by Boisvert et al. (2025).[298]
  • A study on the morphology of teeth, their replacement process and possible feeding ecology of Bajadasaurus pronuspinax is published by Garderes (2025).[299]
  • Militello, Otero & Carballido (2025) reconstruct the neck muscles inserting in the occiput of Amargasaurus cazaui, and determine probable browsing positions of its neck.[300]
  • Lerzo & Gallina (2025) redescribe the left ilium of Cathartesaura anaerobica, and interpret its anatomy as consistent with the invasion of the space within the ilium by parts of the abdominal air sac that provided resistance to the thin ilium.[301]
  • Páramo et al. (2025) study the evolution of the hindlimb morphology of titanosauriform sauropods, and find that morphological adaptations related to wide-gauge posture were initially related to increasing body size, but also that they not longer correlated with changes in body size in the later evolutionary history of Somphospondyli, once fully acquired within the group.[302]
  • A study on the range of motion of the vertebral series in the tail of Giraffatitan brancai is published by Díez Díaz et al. (2025).[303]
  • Redescription of Liaoningotitan sinensis is published by Shan (2025).[304]
  • Large fusioolithid eggs with thin eggshells, produced by titanosaurs, are described from the Upper Cretaceous Villalba de la Sierra Formation (Spain) by Sanguino et al. (2025), who name a new ootaxon Litosoolithus poyosi.[305]
  • Titanosaur tracks preserving details of the skin and soft tissue anatomy, including evidence of variation in scale morphology on feet and evidence that unguals on digits I and II of feet were largely covered in skin, are described from the Cretaceous strata from the Nemegt locality in Mongolia by Bell et al. (2025).[306]
  • Fronimos & Woodward (2025) study histology of ribs of a titanosaur specimen from the Upper Cretaceous strata in Texas, reporting evidence of bone remodeling also seen in appendicular skeletons of other titanosaurs, as well as evidence indicating that growth did not cease simultaneously in all ribs of the studied individual.[307]
  • A titanosaur astragalus with a morphology closer to astragali of older titanosaurs from Asia, Australia and South America than those of contemporary titanosaurs is described from the uppermost Cretaceous strata of the Lameta Formation (India) by Wilson Mantilla et al. (2025).[308]
  • Poropat et al. (2025) identify gut contents of a specimen of Diamantinasaurus matildae from the Cretaceous Winton Formation (Australia), providing evidence of bulk feeding and multi-level browsing resulting in consumption of conifers, seed ferns and flowering plants by the studied sauropod.[309]
  • Gomes Nascimento et al. (2025) summarize the records of titanosaurs from the Bauru Group (Brazil).[310]
  • Fossil material of lithostrotian titanosaurs assigned to two morphotypes, including caudal vertebrae preserved with rare pathological features, is described from the Upper Cretaceous Cambambe Basin (Brazil) by Lacerda et al. (2025).[311]
  • Averianov et al. (2025) describe the first cervical vertebra referrable to Tengrisaurus starkovi, and recover it as a basal member of Colossosauria in an updated phylogenetic study including this new material.[312]
  • Matteoni, Bellardini & Romano (2025) describe new fossil material of titanosaurs from the Santonian Bajo de la Carpa Formation (Argentina), providing probable evidence of presence of members of Saltasauridae (the earliest record of the group from the Neuquén Basin reported to date) and Colossosauria within the same stratigraphic horizon.[313]
  • A study on the histology of the caudal vertebrae of Rocasaurus muniozi is published by Fernández, Windholz & Zurriaguz (2025), who find fibres that might be histological correlates for skeletal pneumaticity to be present but uncommon in the studied bones.[314]
  • A study on the anatomy of the atlas and axis of Neuquensaurus australis is published by Zurriaguz et al. (2025).[315]
  • Kim et al. (2025) study sauropod eggs from the Lower Cretaceous Sihwa Formation (South Korea), and report evidence of sauropods laying eggs on high ground encircled by water-filled channels within a braided river system, protecting their nests with channels serving as natural moats but risking floodings.[316]
  • Sauropod bones affected by osteomyelitis and preserving evidence of distinct manifestations of bone remodeling are described from the Santonian strata from the Ibirá locality (São José do Rio Preto Formation, Bauru Group, Brazil) by Aureliano et al. (2025).[317]
  • Silva Junior et al. (2025) study the resistance of femora of Diplodocus sp., Amargasaurus cazaui, Giraffatitan brancai, Dreadnoughtus schrani, Uberabatitan ribeiroi, Australotitan cooperensis and Neuquensaurus australis to stresses endured while the sauropods assumed bipedal stance, and argue that smaller sauropods such as saltasaurids were able to sustain a bipedal stance for extended periods.[318]
  • Ruiz et al. (2025) estimate the maximum speed capabilities of Dicraeosaurus sattleri, Barosaurus lentus, Diplodocus longus, Camarasaurus grandis, Antarctosaurus brasilensis, Cetiosaurus oxoniensis, Apatosaurus louisae, Turiasaurus riodevensis, Brachiosaurus altithorax, Patagotitan mayorum and Argentinosaurus huinculensis.[319]

Ornithischian research

  • Romilio et al. (2025) describe new ornithischian footprints from the Lower Jurassic Precipice Sandstone (Queensland, Australia), and reaffirm the prevalence of ornithischian footprints across the Early Jurassic dinosaur tracksites from Australia.[320]
  • Description of the anatomy of the postcranial skeleton of Manidens condorensis is published by Becerra et al. (2025).[321]
  • Barrett & Maidment (2025) revise the type material of Nanosaurus agilis, N. rex, Laosaurus celer, L. gracilis, L. consors and Drinker nisti, interpret these taxa as nomina dubia, and report the presence of dental and skull features in the fossil material of Drinker which were also present in pachycephalosaurs.[322]

Thyreophoran research

  • Sánchez-Fenollosa & Cobos (2025) describe a partial cranium and cervical vertebra referrable to Dacentrurus armatus from the Upper Jurassic Villar del Arzobispo Formation (Spain), representing the most complete stegosaurian skull from Europe reported to date, and provide a revised taxonomy and phylogenetic nomenclature of stegosaurs, naming a new clade Neostegosauria.[323]
  • Costa et al. (2025) examine new fossil and historical data about Miragaia longicollum, rejecting a possible synonymy with Dacentrurus.[324]
  • Maidment et al. (2025) describe a new specimen of Spicomellus afer, confirming its ankylosaurian status and expanding on the anatomy of this genus.[325]
  • Rivera-Sylva et al. (2025) describe new fossil material of members of Ankylosauria from the Upper Cretaceous strata in Coahuila (Mexico), including fossils from the Maastrichtian Cañon del Tule Formation representing the youngest records of the group from Mexico reported to date.[326]
  • Cross, Fraass & Arbour (2025) study the variation in ankylosaur tooth morphology, find that multiple lines of evidence are needed for taxonomic identification of isolated ankylosaur teeth, and interpret the studied variation as possibly related to different dietary niches of ankylosaur subgroups.[327]
  • Kirkland et al. (2025) describe new fossil material of Mymoorapelta maysi from the strata of the Morrison Formation from its type locality in the Mygatt-Moore Quarry (Colorado, United States), and support the classification of Mymoorapelta and Gargoyleosaurus as distinct taxa.[328]
  • Álvarez Nogueira et al. (2025) report fragmentary remains of a possible parankylosaurian from the Allen Formation (Argentina), likely representing a taxon distinct from the coeval Patagopelta.[329]
  • Zheng et al. (2025) study the bone histology of two specimens of Liaoningosaurus paradoxus, finding that the studied specimens are juveniles, one of which is the first known definitive hatchling ankylosaur.[330]
  • Treiber et al. (2025) report the first discovery of fossil material of Struthiosaurus sp. from the Maastrichtian strata of the Haţeg Basin known as "Bărbat Formation" or "Pui Beds" (Romania), and review the ankylosaur fossil record from Transylvania.[331]
  • Arbour et al. (2025) describe tracks produced by ankylosaurids from the Cenomanian Kaskapau Formation and Dunvegan Formation (British Columbia and Alberta, Canada), interpreted as evidence of the presence of ankylosaurids in North America prior to the Campanian and their coexistence with non-ankylosaurid ankylosaurs during the mid-Cretaceous, and name a new ichnotaxon Ruopodosaurus clava.[332]
  • Yoon et al. (2025) identify probable ankylosaurid tracks, referred to as cf. Ruopodosaurus, from the Cenomanian Jindong Formation (South Korea).[333]

Cerapod research

  • Maidment et al. (2025) describe a fragmentary femur from the Middle Jurassic El Mers III Formation (Morocco) representing the oldest known fossil of a cerapodan dinosaur.[334]
  • A partial skeleton of a possible cerapodan dinosaur from the Middle Jurassic Kilmaluag Formation (United Kingdom) is described by Panciroli et al. (2025), representing the most complete non-avian dinosaur fossil found from Scotland to date.[335]
  • Pintore, Houssaye & Hutchinson (2025) compare the morphology of the femora of 35 ornithopod species and their adaptations to changes of body mass and locomotor habits throughout the evolutionary history of ornithopods, and interpret their findings as consistent with predominant quadrupedalism in hadrosaurids and varying amounts of bipedalism and quadrupedalism in other ornithopods.[336]
  • Description of a well-preserved skull of a juvenile specimen of Jeholosaurus shangyuanensis from the Lower Cretaceous Yixian Formation (China) and a study on the phylogenetic relationships of this species is published by Bertozzo et al. (2025).[337]
  • A study on the bone histology of Notohypsilophodon comodorensis and Sektensaurus sanjuanboscoi, as well as on the evolution on elasmarians and on their environment, is published by Ibiricu et al. (2025).[338]
  • A partial hindlimb of an ornithopod with probable elasmarian affinities, representing the most complete small-bodied ornithopod specimen from the Cenomanian Griman Creek Formation (Australia) reported to date, is described by Bell et al. (2025).[339]
  • Maíllo et al. (2025) study bone histology of a partial skeleton of a subadult ornithopod individual from the Cretaceous Maestrazgo Basin (Spain), providing evidence of variability of histology of bone elements used for studies of the skeletochronology of ornithopod specimens, depending on the studied taxon.[340]
  • Lucas, Ricketts & Dalman (2025) describe fossil material of cf. Tenontosaurus sp. from the Cretaceous (Aptian/Albian) strata of the Yucca Formation (Texas, United States), representing the southernmost record of a tenontosaur in the North American Western Interior reported to date.[341]
  • An anomoepodid track produced by a tracemaker with possible rhabdodontid affinity is described from the Campanian strata of Roztocze hills (Poland) by Gierliński, Jachymek & Szrek (2025).[342]
  • Guillermo-Ochoa et al. (2025) describe a track of a small ornithopod from the Albian-Turonian Arcurquina Formation (Peru), likely produced during an underwater locomotion.[343]
  • Devereaux et al. (2025) describe the cranial endocast of Fostoria dhimbangunmal.[344]
  • Sánchez-Fenollosa et al. (2025) describe new fossil material of ornithopods from the Upper Jurassic Villar del Arzobispo Formation (Spain), confirming the presence of large-bodied ankylopollexians in the studied area and providing the first evidence of presence of dryosaurids and small-sized ankylopollexians.[345]
  • Fossil material of a previously unrecognized, large-sized, early-diverging member of Ankylopollexia is described from the Upper Jurassic beds of the Lusitanian Basin (Portugal) by Rotatori et al. (2025).[346]
  • New ornithopod fossil material, interpreted as likely representing the oldest fossil material of members of Styracosterna from the Early Cretaceous of the Iberian Peninsula reported to date, is described from the Valanginian-Hauterivian strata of the Oncala or Enciso Group from the El Horcajo site (Spain) by García-Palou, Isasmendi & Torices (2025).[347]
  • A study on the ecology of Iguanodon bernissartensis as indicated by strontium and oxygen isotope composition of remains from Bernissart (Belgium) is published by Decrée et al. (2025), who interpret their findings as indicating that I. bernissartensis was likely a non-migratory animal living in environment with marked seasonality.[348]
  • A hadrosauroid humerus representing the oldest record of a member of the group from the Transylvanian Basin reported to date is described from the Campanian Sebeș Formation (Romania) by Ebner et al. (2025).[349]
  • Jiménez-Moreno et al. (2025) use mathematical models and modern ecological analogs to infer the population dynamics of Mexican hadrosauroids based on their estimated body mass, and suggest that smaller species had a higher average density compared to larger species, which had a lower average density.[350]
  • Bertozzo et al. (2025) identify damage to vertebral neural spines in tails of hadrosaurid specimens, interpreted as possible evidence of mating-related injuries.[351]
  • Qiu et al. (2025) describe eggshell fragments of Stromatoolithus pinglingensis from the Upper Cretaceous Tangbian Formation (China) and revise "Paraspheroolithus" porcarboris from the Upper Cretaceous Argiles et Grès à Reptiles Formation, reinterpreting it as an oospecies of Stromatoolithus and the first evidence of hadrosaurid eggs reported from France.[352]
  • The partial skeleton of a hadrosaurid interpreted as the first member of the tribe Lambeosaurini reported from the Upper Cretaceous strata from South China is described from the Dalangshan Formation by Wang et al. (2025).[353]
  • Evidence of different mechanical performances of the jaws of Corythosaurus casuarius and Gryposaurus notabilis, possibly related to niche partitioning, is presented by Dudgeon & Evans (2025).[354]
  • Aureliano et al. (2025) study the internal vertebral microanatomy of Huallasaurus australis, finding evidence of resemblance of the vertebral vascular pattern to that of Silesaurus and no evidence of presence of invasive air sac diverticula.[355]
  • Bert et al. (2025) calculate resting and maximum metabolic rates of neonates of Maiasaura peeblesorum, interpreted as consistent with a physiology more similar to those of extant fast-growing endotherms than those of extant reptiles, and interpret Maiasaura as most likely altricial.[356]
  • Van der Reest et al. (2025) describe fossil material of Edmontosaurus sp. representing the first dinosaur elements from the Upper Cretaceous Brazeau Formation (Alberta, Canada) diagnosable to the genus level.[357]
  • Sereno et al. (2025) study the preservation of fossilized integument in "mummies" of two specimens (a late juvenile and an early adult) of Edmontosaurus annectens from the Lance Formation (Wyoming, United States), and report evidence of presence of a fleshy midline over the trunk of the juvenile specimen, as well as evidence of presence of wedge-shaped pedal hooves and a spike row spanning from hips to tail tip in the adult specimen.[358]
  • Sharpe et al. (2025) provide new information on the morphology of the hadrosaurid specimen from the Wapiti Formation (Alberta, Canada) preserving evidence of a soft tissue comb that was described by Bell et al. (2014),[359] based on the study of the right side of the skull and the previously undescribed left side, and interpret the studied individual as likely representing a taxon belonging to Edmontosaurini that was distinct from both Edmontosaurus regalis and Edmontosaurus annectens.[360]
  • Wroblewski (2025) describes fossil material of Stygimoloch spinifer from the Maastrichtian Ferris Formation (Wyoming, United States), representing the southernmost record of the species reported to date.[361]
  • Ishikawa et al. (2025) use computed tomography to describe a psittacosaurid skull similar to the holotype of Hongshanosaurus houi, and reinterpret this species as belonging to a distinct taxon in the genus Psittacosaurus, coining the new combination P. houi.[362]
  • Wang et al. (2025) report gastroliths in a specimen consisting of 13 juvenile Psittacosaurus skeletons.[363]
  • Redescription of the anatomy of the skull of Archaeoceratops oshimai and a study on the phylogenetic relationships of basal ceratopsians is published by Wang, Zhang & You (2025).[364]
  • A study on the bone histology and growth of Liaoceratops yanzigouensis is published by Guo, He & Zhao (2025).[365]
  • Yun & Czepiński (2025) study changes of skull and mandible traits in Bagaceratops rozhdestvenskyi and Protoceratops andrewsi during their ontogeny, report evidence indicating that juveniles of the studied species were capable of feeding themselves, and possible evidence of a dietary shift during their ontogeny.[366]
  • Mallon et al. (2025) attributed a new parietal to Spinops found in the Dinosaur Park Formation (Canada, Saskatchewan).[367]
  • Mallon et al. (2025) report that fossil material of only one species of Triceratops (T. prorsus) was found in the lower Scollard Formation (Alberta, Canada) and Frenchman Formation (Saskatchewan, Canada), contemporaneous with the upper third of the Hell Creek Formation that also contains fossil material of T. prorsus, and interpret the fossil record of Triceratops as consistent with anagenetic relationship between the Triceratops horridus and T. prorsus.[368]
  • Obuszewski, Smith & Brown (2025) study the histology of cranial ornaments of Triceratops horridus, providing evidence of unexpected variability based on sampling location.[369]
  • Enriquez et al. (2025) compare scale growth in Chasmosaurus belli, Prosaurolophus maximus and extant reptiles, and find that scale shapes were mostly retained through growth in the studied taxa.[370]

Birds

New bird taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Aenigmatorhynchus[371]

Gen. et sp. nov

Valid

Mayr & Smith

Eocene

Messel Formation

Germany

A bird of uncertain affinities. The type species is A. rarus.

Aeviperditus[372]

Gen. et sp. nov

Valid

Steell et al.

Miocene

Bannockburn Formation

New Zealand

A possible bowerbird. The type species is A. gracilis.

Amazonetta cubensis[373]

Sp. nov

Valid

Zelenkov

Pleistocene

Cuba

A duck related to the Brazilian teal.

Apus boanoi[374]

Sp. nov

Pavia et al.

Pliocene

Langebaanweg

South Africa

A swift, a species of Apus

Archaeodyptes[375]

Gen. et sp. nov

Valid

Mayr et al.

Paleocene

Waipara Greensand

New Zealand

An early-diverging sphenisciform. The type species is A. waitahaorum.

Astur cimmerius[376]

Sp. nov

Valid

Zelenkov & Gorbatcheva

Pleistocene

Crimea

A species of Astur.

Australarus[377]

Gen. et sp. nov

De Pietri et al.

Miocene

Bannockburn Formation

New Zealand

A member of the family Laridae. The type species is A. bakeri.

Baminornis[378]

Gen. et sp. nov

Valid

Chen et al.

Late Jurassic (Tithonian)

Nanyuan Formation

China

An early avialan bearing a pygostyle. The type species is B. zhenghensis.

Chromeornis[379]

Gen. et sp. nov

Valid

O'Connor et al.

Early Cretaceous (Aptian)

Jiufotang Formation

China

An enantiornithean in the family Longipterygidae. The type species is C. funkyi.

Consoravis[380]

Gen. et sp. nov

Ksepka et al.

Eocene

Green River Formation

United States
( Wyoming)

A member of the family Morsoravidae. The type species is C. turdirostris.

Daniadyptes[375]

Gen. et sp. nov

Valid

Mayr et al.

Paleocene

Waipara Greensand

New Zealand

An early-diverging sphenisciform. The type species is D. primaevus.

Fucadytes[381]

Gen. et sp. nov

Valid

Mayr & Goedert

Oligocene

Makah Formation

United States
( Washington)

A member of the family Plotopteridae belonging to the subfamily Tonsalinae. The type species is F. discrepans.

Gobicathartes[382]

Gen. et sp. nov

Gorbatcheva, Zelenkov & Bertelli

Eocene

Ergilin Dzo Formation

Mongolia

A New World vulture. The type species is G. prodigialipes.

Gracanicanetta[383]

Gen. et sp. nov

Valid

Bocheński et al.

Miocene (Langhian)

Bosnia and Herzegovina

A duck. The type species is G. happi.

Gracilisgallus[384]

Gen. et sp. nov

Yu & Li

Late Miocene-early Pliocene

Linxia Basin (upper Liushu Formation to lower Hewangjia Formation)

China

A member of the family Phasianidae. The type species is G. linxia.

Hunucornis[385]

Gen. et sp. nov

Agnolín et al.

Miocene

Las Flores Formation

Argentina

A grebe. Genus includes new species H. huayanen.

Kunpengornis[386]

Gen. et sp. nov

In press

Huang et al.

Early Cretaceous

Jiufotang Formation

China

A euornithean. The type species is K. anhuimusei. Announced in 2025; the final article version will be published in 2026.

Masillaraptor buchheimi[387]

Sp. nov

Valid

Li et al.

Eocene

Green River Formation

United States
( Wyoming)

A member of the family Masillaraptoridae; a species of Masillaraptor.

Miolarus[377]

Gen. et sp. nov

De Pietri et al.

Miocene

Bannockburn Formation

New Zealand

A member of the family Laridae. The type species is M. rectirostrum.

Miostrepera[388]

Gen. et sp. nov

Valid

Worthy et al.

Miocene

Bannockburn Formation

New Zealand

A member of the family Artamidae belonging to the subfamily Cracticinae. The type species is M. canora

Novavis[389]

Gen. et sp. nov

Valid

O'Connor et al.

Early Cretaceous

Xiagou Formation

China

A enantiornithean. The type species is N. pubisculata.

Palaelodus haroldocontii[385]

Sp. nov

Agnolín et al.

Miocene

Las Flores Formation

Argentina

?Parvigrus ypresiensis[390]

Sp. nov

Valid

Mayr & Kitchener

Eocene (Ypresian)

London Clay

United Kingdom

A member of the family Parvigruidae.

?Pseudocrypturus danielsi[391]

Sp. nov

Valid

Mayr & Kitchener

Eocene (Ypresian)

London Clay

United Kingdom

A member of the family Lithornithidae; a species of Pseudocrypturus.

?Pseudocrypturus gracilipes[391]

Sp. nov

Valid

Mayr & Kitchener

Eocene (Ypresian)

London Clay

United Kingdom

A member of the family Lithornithidae; a species of Pseudocrypturus.

Pujatopouli[392]

Gen. et sp. nov

Irazoqui et al.

Late Cretaceous (Maastrichtian)

Lopez de Bertodano Formation

Antarctica

A probable member of Neoaves with affinities with the group Aequornithes. The type species is P. soberana. Announced in 2025; the final article version will be published in 2026.

Scopsoides[393]

Gen. et sp. nov

Valid

Mayr

Eocene

Messel Formation

Germany

A member of the family Halcyornithidae. The type species is S. feisti.

Shuilingornis[394]

Gen. et sp. nov

Valid

Wang et al.

Early Cretaceous

Jiufotang Formation

China

A euornithean in the family Gansuidae. The type species is S. angelai. Announced in 2024; the final article version was published in 2025.

Tadorna rekohu[395]

Sp. nov

Valid

Rawlence et al.

Holocene

New Zealand

A shelduck, a species of Tadorna.

Waimanutaha[375]

Gen. et sp. nov

Valid

Mayr et al.

Paleocene

Waipara Greensand

New Zealand

An early-diverging sphenisciform. The type species is W. kenlovei.

Waiparadyptes[375]

Gen. et sp. nov

Valid

Mayr et al.

Paleocene

Waipara Greensand

New Zealand

An early-diverging sphenisciform. The type species is W. gracilitarsus.

Waltonius[390]

Gen. et sp. nov

Valid

Mayr & Kitchener

Eocene (Ypresian)

London Clay

United Kingdom

A stone-curlew or a bird with affinities with this group. The type species is W. burhinoides.

Zqueheanas[385]

Gen. et sp. nov

Agnolín et al.

Miocene

Las Flores Formation

Argentina

A duck belonging to the subfamily Tadorninae. Genus includes new species Z. hebe.

Avian research

  • Review of the Mesozoic fossil record of avian soft tissue traces is published by O'Connor (2025).[396]
  • A study on the evolution of the ability of birds to move parts of the skull independently is published by Wilken et al. (2025), who link the appearance of this ability to changes of skeletal anatomy and musculature related to the expansion of neurocranium.[397]
  • Lowi-Merri et al. (2025) study the evolution of the sternum in the bird stem group, and find evidence of episodic acquisition of sternal traits related to adaptations to flight in members of the group progressively closer to extant birds.[398]
  • Lo Coco et al. (2025) reconstruct the musculature of the pectoral girdle of Bambiraptor feinbergi, Buitreraptor gonzalezorum, Archaeopteryx lithographica and Confuciusornis sanctus, finding no evidence of radical changes in the function of the pectoral muscles in the studied taxa, and argue that the continuous flapping flight seen in extant birds might have evolved at the Ornithothoraces node rather than in more basal birds.[399]
  • New specimen of Archaeopteryx, representing the third specimen belonging to this genus found in the Tithonian Mörnsheim Formation (Germany), is described by Foth et al. (2025).[400]
  • O'Connor et al. (2025) describe the Chicago specimen of Archaeopteryx, providing new information on the skeletal anatomy, soft tissues and feathers of Archaeopteryx.[401]
  • O'Connor et al. (2025) report probable evidence of presence of the bill tip organ and oral papillae in the Chicago specimen of Archaeopteryx, as well evidence of presence of a basihyal in this specimen suggestive of increased mobility of the tongue, and indicating that rostral features that increase feeding efficiency in extant birds appeared early in avian evolution, possibly in relation to increased caloric demands caused by flight.[402]
  • Duan et al. (2025) present the first three-dimensional reconstruction of the forelimb of Confuciusornis, and provide new information on its anatomy.[403]
  • A study on the skeletal anatomy and phylogenetic affinities of Iberomesornis romerali is published by Castro-Terol et al. (2025).[404]
  • Evidence of preservation of melanosome structures in a head crest feather of a member of the genus Shangyang from the Lower Cretaceous Jiufotang Formation (China), interpreted as indicative of red to deep blue iridescent coloration, is presented by Li et al. (2025).[405]
  • Salgado et al. (2025) describe disarticulated fish remains associated with the holotype specimen of Cratoavis cearensis, interpreted as contents of the digestive tract of the studied bird.[406]
  • A study on the bone histology of Avimaia schweitzerae, Novavis pubisculata and Qiliania graffini is published by Atterholt, O'Connor & You (2025).[407]
  • Fossil material of a bird which might represent a previously unrecognized ornithuromorph species is described from the Lower Cretaceous strata of the Yixian Formation from the Chedaogou locality (Hebei, China) by Wang et al. (2025).[408]
  • A bird trackway with similarities to tracks produced by herons is described from the Cenomanian Dunvegan Formation (British Columbia, Canada) by Lockley, Plint & Helm (2025).[409]
  • Wilson et al. (2025) report the discovery of a new avialan assemblage from the Upper Cretaceous Prince Creek Formation (Alaska, United States), preserving fossils of crown or near-crown birds as well as members of Hesperornithes and Ichthyornithes, and providing the oldest evidence of birds nesting at polar latitudes reported to date.[410]
  • A study on correlates of soft tissues that were parts of the respiratory system and spinal vasculature in the vertebra of Ichthyornis dispar and Janavis finalidens is published by Atterholt et al. (2025), who report the first known evidence of presence of paramedullary diverticula in Mesozoic birds.[411]
  • Crane et al. (2025) report evidence of morphological similarities in the mandibles of Ichthyornis, Vegavis and pelagornithids, and well as evidence from the study of the mandibular morphology of Asteriornis supporting its galloanseran affinites.[412]
  • Evidence from the study of extant and extinct members of the crown group of birds, indicative of impact of correlated trait evolution of skeletal and soft tissues on the head shape in crown birds, is presented by Knapp et al. (2025).[413]
  • Widrig et al. (2025) study the flight capabilities of Lithornis promiscuus, and interpret the studied bird as capable of continuous flapping and/or mixed flapping and gliding, rather than only tinamou-like burst flight, and as capable of long-distance flight.[414]
  • Evidence from the study of moa coprolites, indicating that moa ate and likely spread truffle-like fungi that are endemic to New Zealand, is presented by Boast et al. (2025).[415]
  • Thomas et al. (2025) describe a probable moa trackway from the Pleistocene Karioitahi Group (New Zealand), and name a new ichnotaxon Tapuwaemoa manunutahi.[416]
  • Sánchez-Marco et al. (2025) interpret the ratite eggs from the Pliocene strata from Lanzarote (the Canary Islands) as more likely to represent two egg morphotypes produced by a single ratite (probably ostrich) species than evidence of presence of two ratite species on the island.[417]
  • A study on hearing capabilities of dromornithids is published by McInerney, Handley & Worthy (2025), who consider their findings to be consistent with the interpretation of the studied birds as low-frequency sound producers.[418]
  • Torres et al. (2025) report the discovery of a new, nearly complete skull of Vegavis iaai, interpret its morphology as supporting phylogenetic affinities of Vegavis with Anseriformes, and report evidence of the presence of a feeding apparatus different from those of extant members of Anseriformes but similar to those of extant birds that capture prey underwater.[419]
  • Zonneveld, Naone & Britt (2025) describe foraging traces produced by waterbirds (possibly by Presbyornis pervetus) from the Eocene Green River Formation (Utah, United States), and name new ichnotaxa Erevnoichnus blochis, E. strimmena, Ravdosichnus guntheri and Aptosichnus diatarachi.[420]
  • Mayr & Kitchener (2025) report the first discovery of leg bones of Nettapterornis oxfordi from the Eocene London Clay (United Kingdom), study the phylogenetic relationships of the species, and name a new family Nettapterornithidae.[421]
  • Van der Meer et al. (2025) study the Quaternary duck diversity of Doggerland, identifying 12 species that were previously unconfirmed in the Dutch fossil record, providing evidence of abundance of members of Mergini, and finding no evidence of presence of the common eider which is abundant in the studied area in modern times.[422]
  • Evidence of changes of composition of the galliform assemblage from the southern part of eastern Europe (within the territory of Ukraine) during the Late Pleistocene and Holocene is presented by Gorobets et al. (2025).[423]
  • Evidence from the study of phasianid eggs and nests from the stratigraphic sequence of Abocador de Can Mata (Spain), indicative of sustained philopatric behavior of the studied birds coinciding with local habitat fragmentation during the Middle–Late Miocene transition, is presented by Sellés et al. (2025).[424]
  • Fossil material of a capercaillie (Tetrao sp.) and a diver (Gavia cf. arctica) is described from the Pleistocene (Calabrian) strata from the Taurida cave (Crimea) by Zelenkov (2025).[425]
  • A study on the phylogenetic relationships of the dodo and the Rodrigues solitaire is published by Parish (2025).[426]
  • Evidence from the fossil material of great bustards from the Taforalt cave site (Morocco), indicating that great bustards were breeding in the studied area (300 km east of the range of extant great bustards in Morocco) during the Late Pleistocene and that they were exploited by people who occupied the site, is presented by Cooper et al. (2025).[427]
  • Stervander et al. (2025) study the affinities of members of the genus Nesotrochis and assign them to the separate family Nesotrochidae, recovered by the authors as a sister lineage of adzebills.[428]
  • Sangster et al. (2025) identify the Hodgens' Waterhen as a member of the genus Porzana on the basis of mitochondrial data, and propose to change its English name to New Zealand giant crake.[429]
  • Dos Santos Lima, de Araújo-Júnior & de Souza Barbosa (2025) describe a footprint of a shorebird from the Oligocene Tremembé Formation, representing the first fossil avian footprint reported from Brazil and expanding known geographical range of the ichnogenus Ardeipeda.[430]
  • Trace fossils interpreted as record of a mating dance behavior of a bird (probably a plover) are described from the Miocene Upper Red Formation (Iran) by Abbassi (2025).[431]
  • A coracoid of a loon, interpreted as the oldest fossil a member of the group in Asia reported to date, is described from the upper Miocene strata of the Hyargas Nuur 2 locality in western Mongolia by Zelenkov (2025).[432]
  • Evidence from analyses of contemporary records and fossil and historical range, indicative of broader range of breeding grounds of procellariiform birds from New Zealand in the past compared to the present, is presented by Bellvé et al. (2025).[433]
  • Tennyson et al. (2025) describe a largely complete skull of a member of the genus Aptenodytes from the Tangahoe Formation (New Zealand), exceeding the average skull length of the emperor penguin and providing evidence of presence of such penguins in temperate Zealandia during the Waipipian stage (mid-Piacenzian).[434]
  • The oldest plotopterid skull reported to date is described from the Eocene Lincoln Creek Formation (Washington, United States) by Mayr, Goedert & Richter (2025), who interpret the anatomy of the studied specimen as supporting the affinities of plotopterids with Suloidea.[435]
  • Mori (2025) describes a plotopterid tarsometatarsus from the Oligocene Yamaga Formation (Japan), preserving a unique combination of characteristics found in different plotopterid taxa and expanding known morphological diversity of plotopterids from Japan.[436]
  • The first Cenozoic ignotornid footprints from South America reported to date, interpreted as most likely produced by an ibis, are described from the Miocene Vinchina Formation (Argentina) by Farina, Krapovickas & Marsicano (2025), who name a new ichnotaxon Gragliavipes gavenskii and review the Cretaceous and Cenozoic avian ichnofamilies.[437]
  • Citron et al. (2025) compare the anatomy of the sensory organs, nerves and brain of Apteribis and extant ibises, and interpret Apteribis as likely a nocturnal bird.[438]
  • Fragment of a tarsometatarsus of a New World vulture comparable in size with largest male specimens belonging to the genus Vultur is described from the Quaternary strata from the Canelón Chico locality (Uruguay) by Jones et al. (2025).[439]
  • Fossil plumage of a griffon vulture preserved in three dimensions is described from the Pleistocene strata of the Colli Albani volcanic complex (Italy) by Rossi et al. (2025).[440]
  • Hunt & Lucas (2025) describe a regurgitalite from the Eocene Messel Formation in Germany, preserving bird bones and likely representing the oldest known regurgitalite produced by an owl, as well a regurgitalite from the same formation preserving bones of a gecko and possibly produced by a raptor, name new ichnotaxa Paleostrigilithus mayri and Vomogecko messelensis, and interpret this finding as possible evidence of diurnal habits of Eocene owls.[441]
  • A study on the bone histology of Brontornis burmeisteri and Patagornis marshi is published by Garcia Marsà et al. (2025).[442]
  • Degrange, Tambussi & Witmer (2025) study the anatomy of skull regions of phorusrhacids associated with the loss of cranial kinesis, and report evidence of simplification of food-handling mechanics and increase of bite force throughout the evolutionary history of the group.[443]
  • Agnolin, Chafrat & Álvarez-Herrera (2025) describe new fossil material of Patagorhacos terrificus from the Miocene Chichinales Formation (Argentina), interpreted as supporting placement of the species within Phorusrhacidae.[444]
  • Purported brontornithid tibiotarsus from the La Venta locality in Colombia reported by Ortiz-Pabón et al. (2025)[445] is reinterpreted as fossil material of a phorusrhacid by Degrange et al. (2025), providing possible evidence of presence of fossil material of two phorusrhacid taxa at the site.[446]
  • Horváth (2025) describes new fossil material of birds from the Miocene and Pliocene sites in Hungary, including 10 taxa new to the Hungarian Neogene avifauna.[447]
  • Marqueta et al. (2025) describe bird assemblages from the Pleistocene levels of the Galls Carboners and Cudó caves (Spain), reporting evidence of presence of the pine grosbeak or a similar bird, which is no longer present in the study area.[448]
  • Syverson & Prothero (2025) study changes of the size or robustness of birds from the La Brea Tar Pits, and find evidence of previously undetected changes in the studied taxa, but report no evidence of a clear relationship between those changes and changes in temperature.[449]
  • Costa et al. (2025) study the taxonomic composition of the bird assemblage from the Lajedo de Soledade site (Brazil) and reconstruct the diet of Pleistovultur nevesi from the studied site, interpreted as feeding on carcasses of animals living in open areas during the Late Pleistocene.[450]
  • Hering et al. (2025) describe subfossil bird burrows from the Tibesti Mountains (Chad), interpreted as possible nesting structures of birds such as bee-eaters, swallows or kingfishers living in the area during the African humid period.[451]
  • Zonneveld et al. (2025) revise traces produced by modern birds in marginal aquatic settings, and evaluate the possibilities of identification of such traces in the fossil record.[452]

Pterosaurs

New pterosaur taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Bakiribu[453]

Gen. et sp. nov

Pêgas et al.

Early Cretaceous (Aptian-Albian)

Romualdo Formation

Brazil

A member of the family Ctenochasmatidae. The type species is B. waridza.

Darwinopterus camposi[454]

Sp. nov

Valid

Cheng et al.

Jurassic

Tiaojishan Formation

China

A member of the family Wukongopteridae; a species of Darwinopterus.

Eotephradactylus[455]

Gen. et sp. nov

Valid

Kligman et al.

Late Triassic

Chinle Formation

United States
( Arizona)

An early-diverging pterosaur. The type species is E. mcintireae.

Galgadraco[456]

Gen. et sp. nov

Valid

Giaretta et al.

Late Cretaceous

Serra da Galga Formation

Brazil

A member of the family Azhdarchidae. The type species is G. zephyrius.

Garudapterus[457]

Gen. et sp. nov

Valid

Manitkoon et al.

Early Cretaceous

Khorat Group

Thailand

A member of the family Ctenochasmatidae belonging to the subfamily Gnathosaurinae. The type species is G. buffetauti.

Gobiazhdarcho[458]

Gen. et sp. nov

Valid

Pêgas, Zhou & Kobayashi

Late Cretaceous (Turonian–Santonian)

Bayanshiree Formation

Mongolia

A member of the family Azhdarchidae. The type species is G. tsogtbaatari.

Infernodrakon[459]

Gen. et sp. nov

Thomas et al.

Late Cretaceous (Maastrichtian)

Hell Creek Formation

United States
( Montana)

A member of the family Azhdarchidae. The type species is I. hastacollis.

Makrodactylus[460]

Gen. et sp. nov

Valid

Hone et al.

Late Jurassic (Tithonian)

Mörnsheim Formation

Germany

A non-pterodactyloid monofenestratan. The type species is M. oligodontus.

Nipponopterus[461]

Gen. et sp. nov

Valid

Zhou et al.

Late Cretaceous

Mifune Group

Japan

A member of the family Azhdarchidae. The type species is N. mifunensis. Announced in 2024; the final article version was published in 2025.

Saratovia[462]

Gen. et sp. nov

Valid

Averianov

Late Cretaceous (Cenomanian)

Melovatka Formation

Russia
( Saratov Oblast)

A member of Ornithocheirae belonging to the group Targaryendraconia. The type species is S. glickmani.

Spathagnathus[463]

Gen. et sp. nov

Valid

Fernandes et al.

Late Jurassic (Kimmeridgian)

Torleite Formation

Germany

A member of the family Ctenochasmatidae belonging to the subfamily Gnathosaurinae. The type species is S. roeperi.

Tsogtopteryx[458]

Gen. et sp. nov

Valid

Pêgas, Zhou & Kobayashi

Late Cretaceous (Turonian–Santonian)

Bayanshiree Formation

Mongolia

A member of the family Azhdarchidae. The type species is T. mongoliensis.

Pterosaur research

  • Evidence of higher laminarity rates of wing bones of pterosaurs compared to their hindlimb bones is presented by Araújo et al. (2025).[464]
  • A study on the presence, volume, and capacity of the cervical musculature of pterosaurs is published by Buchmann & Rodrigues (2025), who interpret the reconstructed musculature as consistent with surface fishing foraging habits of Rhamphorhynchus muensteri and members of the genus Anhanguera, and with capture of small terrestrial prey by Azhdarcho lancicollis.[465]
  • Buchmann & Rodrigues (2025) compare resistance of neck vertebrae of Anhanguera piscator and Azhdarcho lancicollis to muscular stresses, and interpret their findings as consistent with different foraging strategies of the studied pterosaurs.[466]
  • Hone & Prondvai (2025) review the state of knowledge on the structure and function of uropatagium between the legs of pterosaurs.[467]
  • Purported pterosaur tracks reported from the Lower Cretaceous Patuxent Formation (Virginia, United States) by Weems & Bachman (2023)[468] are argued to be more likely results of erosion by McDavid & Thomas (2025).[469]
  • Bantim et al. (2025) describe two incomplete wing phalanges from the strata of the Romualdo Formation in Piauí (Brazil), extending known geographical range of pterosaurs in the Araripe Basin.[470]
  • Smyth et al. (2025) propose a catastrophic-attritional taphonomic model explaining the preservation of pterosaur fossils from the Solnhofen Limestone (Germany), interpreting small- to medium-sized pterosaur specimens as killed and quickly buried during storms, resulting in preservation of well-articulated specimens, while larger pterosaurs were preserved as fragmentary remains as a result of longer delay between their death and burial; the author also identify humeral fractures in early juvenile specimens of Pterodactylus antiquus interpreted as most likely resulting from excessive wing loading during flight, indicating that Pterodactylus was capable of taking flight at a very early age.[471]
  • A large, three-dimensionally preserved humerus of a scaphognathine rhamphorhynchid (cf. Harpactognathus gentryii), providing new information on the anatomy of members of this group, is described from the Upper Jurassic Morrison Formation (Wyoming, United States) by Sprague & McLain (2025).[472]
  • Hone & McDavid (2025) describe the largest known specimen of Rhamphorhynchus muensteri (wingspan 1.8 metres (5.9 ft)) from the Solnhofen Limestone (Germany) and discuss its implications for anatomical transformations through ontogeny in the genus and other rhamphorhynchines.[473]
  • Jagielska et al. (2025) describe the osteology of Dearc sgiathanach and reconstruct its cranial and antebrachial musculature.[474]
  • Smyth et al. (2025) identify three pterosaur tracks morphotypes as produced by trackmakers belonging to the groups Ctenochasmatoidea, Dsungaripteridae and Neoazhdarchia, and interpret the distribution of pterosaur tracks as consistent with a mid-Mesozoic radiation of pterodactyloid pterosaurs into terrestrial niches.[475]
  • Mazin & Pouech (2025) identify five morphotypes of small- to medium-sized pterodactyloid tracks from the Tithonian strata of the Crayssac site (France).[476]
  • de Araújo et al. (2025) study the flight-related adaptations of pterosaurs, including Caiuajara dobruskii, anhanguerids, and dsungaripteroids, in relation to their laminar bones.[477]
  • Hone, Lauer & Lauer (2025) report evidence of preservation of foot pad scales and webbing between the toes in a possible specimen of Germanodactylus cristatus from the Upper Jurassic strata from the Solnhofen region of Germany, as well as evidence of preservation of hand and foot soft tissues in a different pterodactyloid specimen reported from the Solnhofen Formation.[478]
  • Partial pterosaur humerus with similarities to the humerus of Cycnorhamphus suevicus is described from the Upper Jurassic strata in the Volga region (Russia) by Averianov & Lopatin (2025).[479]
  • A ctenochasmatid mandible representing the first finding of a pterodactyloid pterosaur fossil from the Upper Jurassic (Tithonian) Portland Limestone Formation (United Kingdom) is described by Smith & Martill (2025).[480]
  • Bennett (2025) revises Gnathosaurus subulatus and interprets both "Pterodactylus" micronyx and Aurorazhdarcho primordius as junior synonyms of this species.[481]
  • A study on tooth replacement in Forfexopterus is published by Zhou & Fan (2025).[482]
  • Redescription and a study on the affinities of Herbstosaurus pigmaeus is published by Ezcurra et al. (2025).[483]
  • Song et al. (2025) describe a pterosaur humerus from the Lower Cretaceous Lianmuqin Formation (China), interpreted as the first record of a member of Ornithocheiromorpha from the Tugulu Group.[484]
  • Xu, Jiang & Wang (2025) describe a new specimen of Hongshanopterus lacustris from the Lower Cretaceous Jiufotang Formation (China), providing new information on the anatomy of members of this species, and redescribe the holotype of Nurhachius ignaciobritoi.[485]
  • Pêgas (2025) presents a new phylogenetic analysis of Ornithocheiriformes, registers several pterosaur clades under the PhyloCode and names a new clade Anhangueroidea.[486]
  • An isolated tooth of a probable member of Ornithocheiriformes representing the first pterosaur fossil reported from the Lower Cretaceous Quiricó Formation (Brazil) is described by Fialho et al. (2025).[487]
  • Aureliano et al. (2025) study the histology of a tooth a member of Ornithocheiriformes from the Lower Cretaceous Crato Formation (Brazil), interpreted as consistent with earlier studies[488][489] that recovered pterosaurs as having the most rapid tooth development among all members of Archosauriformes studied to date.[490]
  • Pêgas et al. (2025) interpret Cearadactylus atrox as a likely junior synonym of Brasileodactylus araripensis.[491]
  • Piazentin et al. (2025) describe a new mandible of Anhanguera robustus from the Romualdo Formation (Brazil), and reaffirm the validity of A. robustus.[492]
  • New specimen of Sinopterus preserving phytoliths and gastroliths in the abdominal cavity is described by Jiang et al. (2025), confirming hypotheses of herbivory in tapejarids.[493]
  • Lu et al. (2025) study the distribution of chemical elements in the holotype specimen of Sinopterus atavismus.[494]
  • The most complete skull and articulated lower jaw of Tupandactylus imperator reported to date, providing new information on the morphology of the skull of members of this species, is described from Crato Formation by Canejo, Sayão & Kellner (2025).[495]
  • Thomas & McDavid (2025) study the phylogenetic relationships of members of Azhdarchomorpha, revise their phylogenetic taxonomy, and name new clades Shenzhoupterinae, Concilazhia and Serpennata.[496]
  • Alhalabi et al. (2025) describe a fragmentary humerus of a large-bodied azhdarchid from the Maastrichtian strata from the Palmyrides mountain chain, representing the first pterosaur record from Syria and providing evidence of presence of azhdarchids in nearshore environments.[497]
  • Ortiz-David et al. (2025) study the taphonomy of the holotype and the paratype of Thanatosdrakon amaru, reporting evidence of rapid burial of the holotype and prolonged subaerial exposure of the paratype.[498]
  • The first pterosaur tracks from the Lower Cretaceous Botucatu Formation (Brazil), likely produced by a member of Azhdarchoidea, are described by Lacerda, Fernandes & Leonardi (2025).[499]
  • Probable azhdarchoid and ornithocheiroid tracks are identified in the Lower Cretaceous (Barremian-Aptian) strata of the Enciso Group (Spain) by Pascual-Arribas et al. (2025).[500]
  • A study on the trophic relationships between pterosaurs and other taxa from the Romualdo Formation (Brazil), as indicated by mercury concentrations in their fossil remains, is published by Antonietto et al. (2025), who interpret the studied ornithocheiraeans as feeding on small fishes, and interpret the studied thalassodromines as opportunistic generalists.[501]
  • Pinheiro et al. (2025) revise the taxonomy and paleobiology of Cretaceous pterosaurs from the Araripe Basin (Brazil).[502]
  • New fossil material of pterosaurs, including part of a metacarpal of an azhdarchoid and a vertebra of an indeterminate derived pterodactyloid, is described from the Campanian Cerro del Pueblo Formation (Mexico) by Rivera-Sylva et al. (2025).[503]
  • A fragment of a finger bone of an indeterminate diminutive pterosaur is described from the Maastrichtian strata from the Møns Klint Formation (Denmark) by Milàn, Jakobsen & Lindow (2025).[504]
  • Review of studies of pterosaur biomechanics, including their terrestrial locomotion and flight dynamics, is published by Costa et al. (2025).[505]
  • Ceroula et al. (2025) provide estimates of terrestrial locomotion capabilities of pterosaurs on the basis of the study of femora, humeri and body mass of 25 specimens.[506]

Other archosaurs

Other new archosaur taxa

Name Novelty Status Authors Age Type locality Country Notes Images
Alickmeron[507] Gen. et comb. nov. Valid Sen & Ray Late Triassic (Norian) Lower Maleri Formation India A lagerpetid. The type species is A. maleriensis.

Gondwanax[508]

Gen. et sp. nov

Valid

Müller

MiddleLate Triassic (Ladinian–early Carnian)

Pinheiros-Chiniquá Sequence of the Santa Maria Supersequence

Brazil

A sulcimentisaurian member of the possibly paraphyletic family Silesauridae. The type species is G. paraisensis. Announced in 2024; the final article version was published in 2025.

Itaguyra[509]

Gen. et sp. nov

Valid

Paes Neto et al.

Late Triassic (Carnian)

Santa Cruz Sequence of the Santa Maria Supersequence

Brazil

A "silesaurid". The type species is I. occulta.

Other archosaur research

  • Garcia & Müller (2025) revise the fossil record of probable pterosaur precursors from the Triassic strata of the Candelária Sequence of the Santa Maria Supersequence (Brazil) and study their phylogenetic affinities, recovering lagerpetids as an evolutionary grade ancestral to pterosaurs.[510]
  • Aureliano et al. (2025) compare the vertebra of the lagerpetid Venetoraptor gassenae and the pterosaur Caiuajara sp., and report evidence indicating that early signs of postcranial skeletal pneumaticity were already present in non-pterosaurian pterosauromorphs, and evidence of an increase of pneumatic complexity during pterosauromorph evolution.[511]
  • Tolchard, Perkins & Nesbitt (2025) describe new silesaurid fossil material from the base of the Dockum Group (Texas), providing evidence of continued presence of members of this group in the area of southwestern United States throughout the Late Triassic.[512]
  • Marsh (2025) identifies fossil material of a large silesaurid from the Petrified Forest Member of the Chinle Formation (Arizona, United States), and interpret both this specimen and a large coelophysoid theropod from the same locality as evidence of presence of large theropods and non-dinosaurian dinosauriforms in western North America before the Triassic–Jurassic extinction event.[513]
  • Lovegrove et al. (2025) describe a large silesaur femur from the Ladinian-Carnian Ntawere Formation (Zambia), and argue that the studied specimen and previously described silesaur femora from the same formation cannot be confidently referred to Lutungutali sitwensis.[514]
  • Probable new fossil material of Eucoelophysis baldwini is described from the strata of the Chinle Formation from the Hayden Quarry (New Mexico, United States) by Breeden et al. (2025).[515]

General research

  • Evidence from the study of bone pneumaticity in extant birds, indicating that studies of skeletal pneumaticity in extinct archosaurs that don't take soft tissues in the internal bone cavities into account might overestimate the volume fraction of pneumatic bones that was composed of air, is presented by Burton et al. (2025).[516]
  • Byrne et al. (2025) report evidence from the study of extant amniotes indicating that lack of osteological and histological correlates of the avian style respiratory system such as pneumaticity or pneumosteum does not by itself rule out the possibility of presence of such respiratory system in fossil archosaurs, as these features can also be absent in extant birds that adapted to aquatic lifestyle or evolved small body size.[517]
  • Byrne et al. (2025) reconstruct the red blood cell size evolution in archosaurs on the basis of histological indicators of red blood cell size, and report evidence of increase of their size in crocodile-line archosaurs and decrease of their size in bird-line archosaurs.[518]
  • Evidence from the study of bone histology of extant Nile crocodiles, indicating that bones of extant and fossil archosaurs might have more growth marks than expected for their age as a result of growth in favorable conditions, is presented by Chinsamy & Pereyra (2025).[519]
  • Xu & Barrett (2025) review the research on the evolutionary history of feathers from the preceding years.[520]
  • New tetrapod fossil assemblage, including lagerpetid and early-diverging sauropodomorph fossil material, is described from the Carnian strata from the lower exposures of the Niemeyer Complex (Brazil) by Doering et al. (2025).[521]
  • A study on the biogeography of Triassic pterosaurs and lagerpetids is published by Foffa et al. (2025), who interpret their findings as indicating that lagerpetids tolerated a broader range of environmental conditions than pterosaurs, resulting in expansion of pterosaur distribution only after the climate became more humid following the Carnian pluvial episode.[522]
  • Evidence of similarities in brain anatomy of pterosaurs and non-avian members of Paraves is presented by Bronzati et al. (2025), who also report evidence from the study of the cranial endocast of Ixalerpeton polesinensis indicating that brain structure of pterosaurs was largely unprecedented in lagerpetids.[523]
  • Sena et al. (2025) measure metadiaphyseal and nutrient foramina openings in the femora of immature specimens of Halszkaraptor and Rhamphorhynchus, and calculate similar mass-independent maximal metabolic rates and blood flow rates for the studied archosaurs in spite of their different locomotion and ecology.[524]
  • Wang et al. (2025) describe new feather specimens from the Cretaceous amber from Myanmar, including a feather type with similarities to primitive feathers of non-avian theropods, preserved with melanosomes suggestive of a black color with a red luster, and a probable ornithothoracine (possibly enantiornithean) feather type preserved with melanosomes suggestive of a gray or black color.[525]
  • Zhang et al. (2025) study feathers from the Cretaceous amber from Myanmar with barb rami composed entirely of cortical tissue with no internal medulla, interpreted as suggestive of incomplete tissue differentiation in the early evolution of feathers, resulting in evolution of diverse morphotypes of early feathers with morphologies not seen in extant birds.[526]
  • Hedge et al. (2025) revise archosaur eggshells from the Mussentuchit Member of the Cedar Mountain Formation (Utah, United States), and identify remains of eggs produced by oviraptorosaur theropods, ornithopods and a crocodylomorph.[527]
  • Brown et al. (2025) describe a cervical vertebra of a juvenile specimen of Cryodrakon boreas from the Dinosaur Park Formation (Alberta, Canada), preserved with a bite mark interpreted as likely produced by a crocodilian.[528]
  • Cardia et al. (2025) study the feeding habits and trophic levels of vertebrates from the Upper Cretaceous Bauru Group (Brazil) on the basis of mercury concentration in their bones and tooth enamel, and interpret their findings as suggestive of herbivory in some sphagesaurids and of high trophic position of baurusuchids and abelisaurids.[529]
  • Hunt & Lucas (2025) describe regurgitalites from the Lower Cretaceous La Huérguina Formation in Spain (preserving bird bones and likely produced by a theropod or a pterosaur), from the Upper Jurassic Nusplingen Limestone in Germany (preserving pterosaur bones and likely produced by a crocodyliform) and from the Oligocene White River Formation in Wyoming, United States (preseving rodent bones and likely produced by an owl), and name new ichnotaxa Hoyasemeticus sanzi, Flugsaurierbromus schweigerti and Bubobromus kathyhuntae.[530]
  • Link et al. (2025) describe a tibiotarsus of a large phorusrhacid from the Miocene strata from La Venta (Colombia), preserved with four pits interpreted as feeding traces left by a medium-sized caiman (possibly Purussaurus neivensis).[531]
  • Cornille et al. (2025) present an assessment of bone pathologies in extant crocodilians, providing comparative data for interpretation of bone pathologies in fossil archosaurs.[532]

References

  1. ^ Salih, K.; Müller, J.; Eisawi, A.; Bibi, F. (2025). "A new late Pleistocene fossil crocodile from Sudan reveals hidden diversity of Crocodylus in Africa". Scientific Reports. 15 (1) 27433. Bibcode:2025NatSR..1527433S. doi:10.1038/s41598-025-08980-6. PMC 12316981. PMID 40750802.
  2. ^ Iori, Fabiano Vidoi; Marinho, Thiago da Silva; Paschoa, Leonardo Silva; Fernandes, Renan Oliveira; Tavares, Sandra Simionato; Montefeltro, Felipe Chinaglia (2025-10-15). "Crocodyliforms of the São José do Rio Preto Formation (Bauru Basin, Upper Cretaceous), taxonomic and preservational aspects". Journal of South American Earth Sciences. 165 105718. Bibcode:2025JSAES.16505718I. doi:10.1016/j.jsames.2025.105718.
  3. ^ Novas, F. E.; Pol, D.; Agnolín, F. L.; Carvalho, I. S.; Manane, M.; Tsuihiji, T.; Rozadilla, S.; Lio, G. L.; Isasi, M. P. (2025). "A new large hypercarnivorous crocodyliform from the Maastrichtian of Southern Patagonia, Argentina". PLOS ONE. 20 (8) e0328561. Bibcode:2025PLoSO..2028561N. doi:10.1371/journal.pone.0328561. PMC 12385380. PMID 40864626.
  4. ^ Haldar, A.; Ray, S.; Bandyopadhyay, S. (2025). "A new paratypothoracin aetosaur (Archosauria: Pseudosuchia) from the Upper Triassic Dharmaram Formation of India and its biostratigraphic implications". Journal of Vertebrate Paleontology. 44 (3). e2439533. doi:10.1080/02724634.2024.2439533.
  5. ^ Sotomayor, J. C.; Leardi, J. M.; Desojo, J. B.; Gaetano, L. C.; Otero, A.; Apaldetti, C. (2025). "Olkasuchus walasto, a new taxon of Aetosauria (Archosauria; Pseudosuchia) from the Los Colorados Formation (Upper Triassic), Argentina". Historical Biology: An International Journal of Paleobiology: 1–22. doi:10.1080/08912963.2025.2571751.
  6. ^ Platt, N. C.; Adams, T. L.; Brochu, C. A. (2025). "A new neosuchian crocodyliform from the Lower Cretaceous (Aptian–Albian) Holly Creek Formation of southwest Arkansas and its implications on the relationships of Goniopholididae". Journal of Vertebrate Paleontology. 45 (2) e2536843. Bibcode:2025JVPal..4536843P. doi:10.1080/02724634.2025.2536843.
  7. ^ Wu, X.-C.; Witmer, L. M.; Chatterjee, S.; Cunningham, D. (2025). "A new crocodylomorph (Pseudosuchia, Crocodylomorpha) from the Upper Triassic of Texas and its phylogenetic relationships". Journal of Vertebrate Paleontology. 44 (4). e2446604. doi:10.1080/02724634.2024.2446604.
  8. ^ Zamora-Vega, C.; Romero, P. E.; Urbina, M.; Carré, M.; Ochoa, D.; Salas-Gismondi, R. (2025). "Exceptional fossils from Peru and an integrative phylogeny reconcile the evolutionary timing and mode of Gavialis and its kin". Biology Letters. 21 (8) 20250238. doi:10.1098/rsbl.2025.0238. PMC 12327081. PMID 40767471.
  9. ^ Courville, E.; Métais, G.; Antoine, P.-O.; Marivaux, L.; Jouve, S. (2025). "Giant longirostrine crocodylians from the Lower Miocene of Pakistan: new material and taxonomic review". Papers in Palaeontology. 11 (3). e70010. Bibcode:2025PPal...1170010C. doi:10.1002/spp2.70010.
  10. ^ Wilberg, E.; Hill, R. V.; Pascucci, T. R.; Roberts, E. M.; Bouaré, M. L.; O'Leary, M. A. (2025). "A new itasuchid (Crocodyliformes, Notosuchia) from the Early Cretaceous of Mali and the ancient Paleo-Tegama river system of Gondwana". Journal of Vertebrate Paleontology. 45 (1) e2505473. Bibcode:2025JVPal..4505473W. doi:10.1080/02724634.2025.2505473.
  11. ^ Wu, X.-C.; Kang, Z.; Shi, J.; You, H.-L.; Dong, L. (2025). "Taihangosuchus wuxiangensis, a new gracilisuchid (Archosauria: Pseudosuchia) from the Middle Triassic of Shanxi Province, China". Historical Biology: An International Journal of Paleobiology. 37 (12): 2707–2742. Bibcode:2025HBio...37.2707W. doi:10.1080/08912963.2025.2537848.
  12. ^ Müller, Rodrigo Temp; Garcia, Mauricio Silva; Damke, Lísie Vitória Soares; Prestes de Bem, Fabiula; Fonseca, André de Oliveira; Doering, Mariana; Schiefelbein, Jeung Hee; Laste, Vitória Zanchett Dalle (2025-12-31). "Osteology, taxonomy and phylogenetic affinities of a new pseudosuchian archosaur from the Middle Triassic of southern Brazil". Journal of Systematic Palaeontology. 23 (1) 2573750. Bibcode:2025JSPal..2373750M. doi:10.1080/14772019.2025.2573750. ISSN 1477-2019.
  13. ^ Von Baczko, M. B.; Ezcurra, M. D.; Lecuona, A.; Vega, N.; Desojo, J. B. (2025). "A new large gracilisuchid from the Upper Triassic levels of the Chañares Formation, northwestern Argentina". Ameghiniana. 62 (5): 354–372. Bibcode:2025Amegh..62.3658B. doi:10.5710/AMGH.29.09.2025.3658.
  14. ^ Bravo, Gonzalo Gabriel; Pol, Diego; Leardi, Juan Martín; Krause, Javier Marcelo; Nicholl, Cecily S. C.; Rougier, Guillermo; Mannion, Philip D. (2025-03-26). "A new notosuchian crocodyliform from the Early Palaeocene of Patagonia and the survival of a large-bodied terrestrial lineage across the K–Pg mass extinction". Proceedings of the Royal Society B: Biological Sciences. 292 (2043) 20241980. doi:10.1098/rspb.2024.1980. PMC 11936684. PMID 40132624.
  15. ^ Allen, H. J.; Wilberg, E. W.; Turner, A. H.; Varricchio, D. J. (2025). "A new, diminutive, heterodont neosuchian from the Vaughn Member of the Blackleaf Formation (Cenomanian), southwest Montana, and implications for the paleoecology of heterodont neosuchians". Journal of Vertebrate Paleontology. 45 (2) e2542185. Bibcode:2025JVPal..4542185A. doi:10.1080/02724634.2025.2542185.
  16. ^ Carvalho, J. C.; Santos, D. M.; Pinto, R. L.; Santucci, R. M. (2025). "Anatomical description and systematics of a new notosuchian (Mesoeucrocodylia; Crocodyliformes) from the Quiricó Formation, Lower Cretaceous, Sanfranciscana Basin, Brazil". Journal of Vertebrate Paleontology. 44 (4). e2452947. doi:10.1080/02724634.2025.2452947.
  17. ^ Saber, S.; Salem, B. S.; Ouda, K.; Gohar, A. S.; El-Sayed, S.; O'Connor, P. M.; Sallam, H. M. (2025). "An early dyrosaurid (Wadisuchus kassabi gen. et sp. nov.) from the Campanian of Egypt sheds light on the origin and biogeography of Dyrosauridae". Zoological Journal of the Linnean Society. 205 (2) zlaf134. doi:10.1093/zoolinnean/zlaf134.
  18. ^ Sellers, K. C.; Wilken, A. T.; Cranor, C. R.; Middleton, K. M.; Holliday, C. M. (2025). "Quadrate orientation and joint reaction force underwent correlated evolution during suchian evolution". Journal of Anatomy joa.70020. doi:10.1111/joa.70020. PMID 40693298.
  19. ^ Lecuona, A.; Keeble, E.; Lin, Y.; Hutchinson, J. R. (2025). "Hindlimb functional morphology and locomotor biomechanics of the small Late Triassic pseudosuchian reptile Gracilisuchus stipanicicorum (Archosauria: Gracilisuchidae)". Journal of Anatomy joa.70067. doi:10.1111/joa.70067. PMID 41261951.
  20. ^ Fitch, A. J.; Kammerer, C. F.; Nesbitt, S. J. (2025). "First occurrences of Poposauroidea (Archosauria: Paracrocodylomorpha) from North Carolina expand their geographic range in the Late Triassic". Palaeodiversity. 18 (1): 1–9. doi:10.18476/pale.v18.a1.
  21. ^ McDavid, Skye Noin (2025-03-15). "Huenesuchus is an objective synonym of Prestosuchus while 'class-group names' do not exist in and are not regulated by the ICZN: a response to Kischlat". Revista Brasileira de Paleontologia. 27 (4): e20240425. Bibcode:2025RvBrP..27E0425M. doi:10.4072/rbp.2024.4.0425.
  22. ^ Pêgas, R. V.; Bandeira, K. L. N.; Silva, R. C. (2025). "Prestosuchus (Reptilia, Pseudosuchia, Loricata) is available from Krebs, 1976, not Huene, 1938". Bulletin of Zoological Nomenclature. 82: 167–170. doi:10.21805/bzn.v82.a028.
  23. ^ Sues, H.-D.; Ma, W.; Ezcurra, M. (2025). "Braincase and digital endocast of a loricatan pseudosuchian (Reptilia: Archosauria) from the Upper Triassic of Nova Scotia (Canada)". PalZ. 99 (4): 435–448. Bibcode:2025PalZ...99..435S. doi:10.1007/s12542-025-00743-y.
  24. ^ Błaszczeć, P.; Antczak, M. (2025). "The histology and function of the dermal armour of the aetosaur Stagonolepis olenkae Sulej, 2010 (Archosauria, Pseudosuchia) from Krasiejów (SW Poland)". Acta Geologica Polonica. 75 (1). e38. doi:10.24425/agp.2024.152660.
  25. ^ Reyes, W. A.; Parker, W. G.; Marsh, A. D.; Kligman, B. T. (2025). "Cranial anatomy, intraspecific variation, and positional variation within Calyptosuchus wellesi (Pseudosuchia: Aetosauria) based on new specimens from the Upper Triassic Chinle Formation (Adamanian, early middle Norian) of Petrified Forest National Park, Arizona, USA". Journal of Paleontology. 99 (Supplement S97): 1–39. Bibcode:2025JPal...99S...1R. doi:10.1017/jpa.2024.42.
  26. ^ Haldar, A.; Ray, S. (2025). "First report of desmatosuchine aetosaur (Pseudosuchia, Aetosauriformes) osteoderms from the Upper Triassic Tiki Formation of India: Their complex internal vascular system, functional significance and biostratigraphy". Journal of Anatomy. 247 (2): 223–249. doi:10.1111/joa.14255. PMC 12265043. PMID 40205778.
  27. ^ Haldar, A.; Ray, S.; Bandyopadhyay, S. (2025). "First report of desmatosuchin aetosaurs (Diapsida, Archosauria) from the lower part of Dharmaram Formation and a biostratigraphic re-evaluation of the upper Triassic horizons of India". Historical Biology: An International Journal of Paleobiology: 1–30. doi:10.1080/08912963.2025.2569748.
  28. ^ Melstrom, K. M.; Angielczyk, K. D.; Ritterbush, K. A.; Irmis, R. B. (2025). "For a while, crocodile: crocodylomorph resilience to mass extinctions". Palaeontology. 68 (2). e70005. Bibcode:2025Palgy..68OA.R1M. doi:10.1111/pala.70005.
  29. ^ Ponce, D. A.; Cerda, I. A.; Desojo, J. B. (2025). "A fast start: Evidence of rapid growth in Trialestes romeri, an early Crocodylomorpha from the Upper Triassic continental beds of Argentina based on osteohistological analyses". Journal of Anatomy. 247 (3–4): 576–586. doi:10.1111/joa.14230. PMC 12397075. PMID 39887998.
  30. ^ Leardi, J. M. (2025). "Redescription of Pseudhesperosuchus jachaleri (Archosauria: Crocodylomorpha) from the Los Colorados Formation (Norian), Argentina". Journal of Systematic Palaeontology. 23 (1) 2507779. Bibcode:2025JSPal..2307779L. doi:10.1080/14772019.2025.2507779.
  31. ^ Srinivas, A.; Bright, J. A.; Cunningham, J. A.; Tavares, S. A. S.; Ricardi-Branco, F.; Carvalho, I. S.; Iori, F. V.; Rayfield, E. J. (2025). "Constraints and adaptations in crocodyliform skull evolution". Proceedings of the Royal Society B: Biological Sciences. 292 (2058) 20251773. doi:10.1098/rspb.2025.1773. PMC 12614795. PMID 41218787.
  32. ^ Wang, L.; Clark, J. M.; Li, H.; Ruebenstahl, A.; Bi, S. (2025). "A new specimen of the early branching crocodyliform Platyognathus hsui extends the record of gobiosuchids back 67 million years". Zoological Journal of the Linnean Society. 204 (2). zlaf032. doi:10.1093/zoolinnean/zlaf032.
  33. ^ Forêt, T.; Aubier, P.; Jouve, S.; Cubo, J. (2025). "Analysing Thalattosuchia palaeobiodiversity through the prism of phylogenetic comparative methods". Palaeontology. 68 (1). e70000. Bibcode:2025Palgy..6870000F. doi:10.1111/pala.70000.
  34. ^ Johnson, M. M.; Sachs, S.; Young, M. T.; Abel, P. (2025). "A re-description of the teleosauroid Macrospondylus bollensis (Jaeger, 1828) from the Posidonienschiefer Formation of Germany". PalZ. 99 (2): 151–176. Bibcode:2025PalZ...99..151J. doi:10.1007/s12542-024-00712-x.
  35. ^ Johnson, M. M.; Mujal, E.; Cooper, S. L. A.; Maxwell, E. E. (2025). "Criteria for inferring seafloor arrival position in teleosauroid carcasses (Crocodylomorpha: Thalattosuchia) and comparison with other marine vertebrates". Geological Magazine. 162 e19. Bibcode:2025GeoM..162E..19J. doi:10.1017/S0016756825100058.
  36. ^ Bhuttarach, S.; Deesri, U.; Martin, J. E.; Manitkoon, S.; Charoenmit, J.; Lauprasert, K. (2025). "New insights into the paleobiogeography of teleosauroid crocodylomorphs in Southeast Asia". Palaeoworld. 34 (6) 200981. Bibcode:2025Palae..3400981B. doi:10.1016/j.palwor.2025.200981.
  37. ^ Pellarin, R.; Sena, M. V. A.; Clarac, F.; Cubo, J. (2025). "Elucidating the thermometabolism of Thalattosuchus superciliosus (de Blainville) Young, Brignon, Sachs, Hornung, Foffa, Kitson, Johnson & Steel, 2021 (Archosauria: Metriorhynchidae): a paleohistological study". Comptes Rendus Palevol. 24 (17): 333–344. doi:10.5852/cr-palevol2025v24a17.
  38. ^ Le Mort, J.; Martin, J. E.; Picot, L.; Hua, S. (2025). "The tailbend of Metriorhynchidae (Crocodylia: Thalattosuchia) measurements, limits and paleoecological implications". PalZ. Bibcode:2025PalZ..tmp...63L. doi:10.1007/s12542-025-00753-w.{{cite journal}}: CS1 maint: bibcode (link)
  39. ^ Albuquerque, A. S.; Pinheiro, A. E. P.; Ribeiro, T. B.; Bergqvist, L. P.; Pereira, P. V. L. G. C. (2025). "Crocodyliform diversity of the Açu Formation (Albian–Cenomanian), Potiguar Basin, Brazil: geographical distribution and palaeobiological implications". Papers in Palaeontology. 11 (4) e70027. Bibcode:2025PPal...1170027A. doi:10.1002/spp2.70027.
  40. ^ Sena, M. V. A.; Montefeltro, F. C.; Marinho, T. S.; Langer, M. C.; Fachini, T. S.; Pinheiro, A. E. P.; Machado, A. S.; Lopes, R. T.; Pellarin, R.; Sayao, J. M.; Oliveira, G. R.; Cubo, J. (2025). "Revisiting the aerobic capacity of Notosuchia (Crocodyliformes, Mesoeucrocodylia)". Lethaia. 57 (4): 1–8. doi:10.18261/let.57.4.6.
  41. ^ Cajado, A. G.; Oliveira, C. E. M.; Andrade, M. B.; Nava, W. R.; Santucci, R. M. (2025). "Osteoderm microstructure indicates ontogenetic shifts in the growth pattern of some Cretaceous notosuchians (Crocodylomorpha)". Journal of Anatomy. 247 (3–4): 620–642. doi:10.1111/joa.70012. PMC 12397060. PMID 40538076.
  42. ^ Muscioni, M.; Chiarenza, A. A.; Nicholl, C. S. C.; Perentin, T.; Dreossi, D.; Fanti, F. (2025). "A ziphodont crocodylomorph from Villaggio del Pescatore Lagerstätte (Campanian, Italy)". Zoological Journal of the Linnean Society. 205 (4) zlaf171. doi:10.1093/zoolinnean/zlaf171.
  43. ^ Navarro, T. G.; Cerda, I. A.; Filippi, L. S.; Pol, D. (2025). "Life history and growth dynamics of a peirosaurid crocodylomorph (Mesoeucrocodylia; Notosuchia) from the Late Cretaceous of Argentina inferred from its bone histology". Journal of Anatomy. 247 (3–4): 608–619. doi:10.1111/joa.14182. PMC 12397063. PMID 39846495.
  44. ^ Aureliano, T.; Maciel, V.; Buck, P. V.; Montefeltro, F. C.; Marinho, T. S.; Ghilardi, A. M. (2025). "Histovariability and fossil diagenesis of Pissarrachampsa (Pseudosuchia, Notosuchia, Baurusuchidae) from the Upper Cretaceous of Southeast Brazil". The Anatomical Record ar.70021. doi:10.1002/ar.70021. PMID 40678957.
  45. ^ Nicholl, C. S. C.; Burke, P. M. J.; Marwood, E. M.; Martin, J. E.; Mahboubi, M.; Tabuce, R.; Mannion, P. D. (2025). "A re-evaluation of the notosuchian crocodyliform Eremosuchus elkoholicus from the lower Eocene of Algeria and the evolutionary and biogeographic history of sebecids". Journal of Vertebrate Paleontology e2572964. doi:10.1080/02724634.2025.2572964.
  46. ^ Viñola López, L. W.; Velez-Juarbe, J.; Münch, P.; Almonte Milan, J. N.; Antoine, P.-O.; Marivaux, L.; Jimenez-Vasquez, O.; Bloch, J. (2025). "A South American sebecid from the Miocene of Hispaniola documents the presence of apex predators in early West Indies ecosystems". Proceedings of the Royal Society B: Biological Sciences. 292 (2045). 20242891. doi:10.1098/rspb.2024.2891. PMC 12040450. PMID 40300627.
  47. ^ Martin, J. E.; Jattiot, R. (2025). "First report of neosuchian remains in Aptian–Albian marine deposits of southeastern France". Proceedings of the Geologists' Association. 136 (5) 101132. Bibcode:2025PrGA..13601132M. doi:10.1016/j.pgeola.2025.101132.
  48. ^ Puértolas-Pascual, E. (2025). "New dwarf crocodylomorph from the Upper Jurassic of Portugal and the first neuroanatomical data for Atoposauridae". Fossil Record. 28 (2): 321–346. Bibcode:2025FossR..28..321P. doi:10.3897/fr.28.167846.
  49. ^ Maréchal, A.; Rotatori, F. M.; Merella, M.; Puértolas-Pascual, E.; Sequero, C.; Pereira, R.; Nsungani, P.; Mateus, O. (2025). "A new Maastrichtian hyposaurine dyrosaurid (Crocodylomorpha) from Namibe province, Angola". Zoological Journal of the Linnean Society. 204 (4) zlaf092. doi:10.1093/zoolinnean/zlaf092.
  50. ^ Kuzmin, I. T.; Sichinava, E. A.; Mazur, E. V.; Gombolevskiy, V. A.; Sennikov, A. G.; Skutschas, P. P. (2025). "Neurocranial anatomy of Paralligator (Neosuchia: Paralligatoridae) from the Upper Cretaceous of Mongolia". Zoological Journal of the Linnean Society. 203 (1). zlae177. doi:10.1093/zoolinnean/zlae177.
  51. ^ Kubo, T.; Usami, K.; Hirayama, R.; Iijima, M.; Winkler, D. E.; Ito, A.; Uno, H.; Miyata, S.; Kubo, M. O. (2025). "Crocodyliform remains from the Upper Cretaceous (Turonian) Tamagawa Formation, northeastern Japan with preliminary dietary reconstruction through dental microwear texture analysis". Cretaceous Research. 176 106197. Bibcode:2025CrRes.17606197T. doi:10.1016/j.cretres.2025.106197.
  52. ^ Della Giustina, F.; Rocchi, R.; Vila, B. (2025). "A new armored crocodyliform from the Upper Cretaceous of Catalonia (Spain): new insight into the evolution of the eusuchian postcranial and dermal skeleton". Cretaceous Research. 176 106178. Bibcode:2025CrRes.17606178D. doi:10.1016/j.cretres.2025.106178.
  53. ^ de Lapparent de Broin, F. (2025). "Description of a new specimen of the Late Cretaceous allodaposuchid crocodile Massaliasuchus affuvelensis (Matheron, 1869), with stratigraphic and palaeogeographic comments". Revue de Paléobiologie, Genève. 44 (7): 1–43. doi:10.5281/zenodo.16529344.
  54. ^ Lessner, E. J.; Petermann, H.; Lyson, T. R. (2025). "First record of Borealosuchus sternbergii from the lower Paleocene Denver Formation (lower Danian), Colorado (Denver Basin)". Journal of Vertebrate Paleontology. 44 (3). e2434214. doi:10.1080/02724634.2024.2434214.
  55. ^ Walter, J. D.; Massonne, T.; Paiva, A. L. S.; Martin, J. E.; Delfino, M.; Rabi, M. (2025). "Expanded phylogeny elucidates Deinosuchus relationships, crocodylian osmoregulation and body-size evolution". Communications Biology. 8 (1) 611. doi:10.1038/s42003-025-07653-4. PMC 12018936. PMID 40269118.
  56. ^ Kuzmin, I. T.; Skutschas, P. P.; Sues, H.-D. (2025). "Braincase of the earliest known alligatoroid (Crocodylomorpha: Crocodylia) from the Upper Cretaceous of Uzbekistan". Proceedings of the Zoological Institute of the Russian Academy of Sciences. 329 (4): 502–517. doi:10.31610/trudyzin/2025.329.4.502.
  57. ^ Hoffman, D. K.; Goldsmith, E. R.; Houssaye, A.; Maidment, S. C. R.; Felice, R. N.; Mannion, P. D. (2025). "Evolution of growth strategy in alligators and caimans informed by osteohistology of the late Eocene early-diverging alligatoroid crocodylian Diplocynodon hantoniensis". Journal of Anatomy. 247 (1): 165–178. doi:10.1111/joa.14231. PMC 12159324. PMID 39924872.
  58. ^ Serrano-Martínez, A.; Luján, À. H.; García-Pérez, Á.; Fortuny, J. (2025). "New data on the inner skull cavities of Diplocynodon tormis (Crocodylia, Diplocynodontinae) from the Duero Basin (Iberian Peninsula, Spain)". Fossil Record. 28 (1): 67–77. Bibcode:2025FossR..28...67S. doi:10.3897/fr.28.133743.
  59. ^ Stout, J. B.; Massonne, T.; Samuels, J. X.; Schubert, B. W. (2025). "Small, enigmatic alligatoroid from the Middle Eocene Clarno Formation, John Day Fossil Beds, Oregon". Fossil Record. 28 (2): 309–319. doi:10.3897/fr.28.169148.
  60. ^ Iijima, M.; Blob, R. W.; Hutchinson, J. R. (2025). "Biomechanical simulations of hindlimb function in Alligator provide insights into postural shifts and body size evolution". Science Advances. 11 (43) eadx3811. doi:10.1126/sciadv.adx3811. PMC 12542966. PMID 41124268.
  61. ^ Panadès I Blas, X.; Galobart, À.; Archer, M.; Stein, M.; Hand, S.; Sellés, A. (2025). "Australia's oldest crocodylian eggshell: insights into the reproductive paleoecology of mekosuchines". Journal of Vertebrate Paleontology. 45 (3) e2560010. Bibcode:2025JVPal..4560010P. doi:10.1080/02724634.2025.2560010.
  62. ^ Pligersdorffer, C. C.; Burke, P. M. J.; Mannion, P. D. (2025). "Evaluation of the endocranial anatomy of the early Paleogene north African gavialoid crocodylian Argochampsa krebsi and evolutionary implications for adaptation to salinity tolerance in marine crocodyliforms". Journal of Anatomy. 246 (6): 974–986. doi:10.1111/joa.14213. PMC 12079763. PMID 39814549.
  63. ^ Vélez-Rosado, K. I.; Zalles-Grebetskaya, O. I.; Wilson Mantilla, J. A.; Schoene, B.; Maloof, A.; Howes, B. (2025). "New material of Dolichochampsa minima (Archosauria: Crocodylia) from the Cretaceous–Palaeogene El Molino Formation of Bolivia sheds light on the early evolution of Gavialinae". Journal of Systematic Palaeontology. 23 (1). 2496524. Bibcode:2025JSPal..2396524V. doi:10.1080/14772019.2025.2496524.
  64. ^ El-Degwi, E. S.; AbdelGawad, M.; Radwaan, S. E.; Sliem, R. E.; Sileem, A.; Abd Elhady, S. I. (2025). "Evolutionary trend of the broad-snouted crocodile from the Eocene, Early Miocene and recent ones from Egypt". Scientific Reports. 15 (1). 9159. Bibcode:2025NatSR..15.9159E. doi:10.1038/s41598-025-91167-w. PMC 11914565. PMID 40097488.
  65. ^ Górka, M.; Březina, J.; Chroust, M.; Kowalski, R.; López-Torres, S.; Tałanda, M. (2025). "Crocodylian remains from the Miocene of the Fore-Carpathian Basin and its foreland—including the world's northernmost Neogene crocodylian". Acta Palaeontologica Polonica. 70 (2): 225–251. doi:10.4202/app.01194.2024.
  66. ^ Harzhauser, M.; Göhlich, U. B.; Gross, M.; Vasilyan, D. (2025). "The last crocodylian in Central Europe? A new occurrence from the late Middle Miocene of the Vienna Basin (Austria)". Historical Biology: An International Journal of Paleobiology. 37 (12): 2751–2758. Bibcode:2025HBio...37.2751H. doi:10.1080/08912963.2025.2466048.
  67. ^ Muniz, F.; Hsiou, A.; de Andrade, F. D.; Osés, G.; Rizzutto, M.; Pacheco, M. L. A. F. (2025). "Diagenetic characterization of crocodyliform fossils from the Adamantina Formation (Upper Cretaceous, Bauru Group): evaluating the chemical alteration of skeletal tissues through a multi-technique approach". Cretaceous Research. 179 106248. doi:10.1016/j.cretres.2025.106248.
  68. ^ Hart, W. J.; Atterholt, J.; Wedel, M. J. (2025). "First occurrences of neural canal ridges in Crocodylia". Acta Palaeontologica Polonica. 70 (4): 749–753. doi:10.4202/app.01269.2025.
  69. ^ Dalman, Sebastian G.; Jasinski, Steven E.; Malinzak, D. Edward; Lucas, Spencer G.; Kundrát, Martin; Fiorillo, Anthony R. (September 2025). "A new saurolophine hadrosaurid (Ornithischia: Hadrosauridae) from the Upper Cretaceous (Campanian) Hunter Wash Member, Kirtland Formation, San Juan Basin, New Mexico". New Mexico Museum of Natural History and Science Bulletin. Fossil Record 11: 73–114.
  70. ^ Lovelace, David M; Kufner, Aaron M; Fitch, Adam J; Curry Rogers, Kristina; Schmitz, Mark; Schwartz, Darin M; LeClair-Diaz, Amanda; St.Clair, Lynette; Mann, Joshua; Teran, Reba (2025-01-01). "Rethinking dinosaur origins: oldest known equatorial dinosaur-bearing assemblage (mid-late Carnian Popo Agie FM, Wyoming, USA)". Zoological Journal of the Linnean Society. 203 (1) zlae153. doi:10.1093/zoolinnean/zlae153. ISSN 0024-4082.
  71. ^ Martínez, R. N.; Colombi, C. E.; Ezcurra, M. D.; Abelín, D. O.; Cerda, I.; Alcober, O. A. (2025). "A Carnian theropod with unexpectedly derived features during the first dinosaur radiation". Nature Ecology & Evolution. 9 (12): 2238–2247. Bibcode:2025NatEE...9.2238M. doi:10.1038/s41559-025-02868-4. PMID 41087647.
  72. ^ Xi, Yao; Zhao, Qi; Ren, Tingcong; Wei, Guangbiao; Xu, Xing (2025-01-17). "New evidence for the earliest ornithischian dinosaurs from Asia". iScience. 28 (1) 111641. Bibcode:2025iSci...28k1641Y. doi:10.1016/j.isci.2024.111641. PMC 11761276. PMID 39868031.
  73. ^ Bellardini, F.; Filippi, L. S.; Carballido, J. L.; Garrido, A. C.; Baiano, M. A. (2025). "Side by side with titans: a new rebbachisaurid dinosaur from the Huincul Formation (upper Cenomanian) of Patagonia, Argentina". Cretaceous Research. 176 106188. Bibcode:2025CrRes.17606188B. doi:10.1016/j.cretres.2025.106188.
  74. ^ Whitlock, John A.; Garderes, Juan Pablo; Gallina, Pablo; Lamanna, Matthew C. (2025-10-27). "Athenar bermani, a new species of dicraeosaurid sauropod from Dinosaur National Monument, Utah, U.S.A." Palaeontologia Electronica. 28 (3): 1–13. doi:10.26879/1550. ISSN 1094-8074.
  75. ^ Woodruff, D Cary; Horner, John R; Goodwin, Mark B; Evans, David C (October 1, 2025). "The first pachycephalosaurid from the Late Cretaceous Two Medicine Formation: effects of the Western Interior Seaway on North American pachycephalosaurid evolution". Zoological Journal of the Linnean Society. 205 (2) zlaf087. doi:10.1093/zoolinnean/zlaf087. ISSN 0024-4082.
  76. ^ Bertozzo, Filippo; Camilo, Bruno; Araújo, Ricardo; Manucci, Fabio; Kullberg, José Carlos; Cerio, Donald G.; Carvalho, Victor Feijó de; Marrecas, Pedro; Figueiredo, Silvério D.; Godefroit, Pascal (December 31, 2025). "Cariocecus bocagei, a new basal hadrosauroid from the Lower Cretaceous of Portugal". Journal of Systematic Palaeontology. 23 (1) 2536347. Bibcode:2025JSPal..2336347B. doi:10.1080/14772019.2025.2536347. ISSN 1477-2019.
  77. ^ Agnolín, Federico L.; Motta, Matías J.; Garcia Marsà, Jordi; Aranciaga-Rolando, Mauro A.; Álvarez-Herrera, Gerardo; Chimento, Nicolás R.; Rozadilla, Sebastian; Brissón-Egli, Federico; Cerroni, Mauricio A.; Panzeri, Karen M.; Bogan, Sergio; Casadio, Silvio; Sterli, Juliana; Miquel, Sergio E.; Martínez, Sergio; Pérez, Leandro M.; Pol, Diego; Novas, Fernando E. (2025). "New fossiliferous locality from the Anacleto Formation (Late Cretaceous, Campanian) from northern Patagonia, with the description of a new titanosaur". Revista del Museo Argentino de Ciencias Naturales. 26 (2): 217–259. doi:10.22179/REVMACN.26.885. ISSN 1853-0400.
  78. ^ Simón, M. E.; Salgado, L. (2025). "New rebbachisaurid (Dinosauria, Sauropoda) from the Huincul Formation (upper Cenomanian-Turonian) of Villa El Chocón (Neuquén Province, Argentina)". Cretaceous Research. 173 106137. Bibcode:2025CrRes.17306137S. doi:10.1016/j.cretres.2025.106137.
  79. ^ Kobayashi, Yoshitsugu; Zelenitsky, Darla K.; Fiorillo, Anthony R.; Chinzorig, Tsogtbaatar (2025-03-25). "Didactyl therizinosaur with a preserved keratinous claw from the Late Cretaceous of Mongolia". iScience. 28 (4). 112141. Bibcode:2025iSci...28k2141K. doi:10.1016/j.isci.2025.112141. ISSN 2589-0042. PMC 12131255. PMID 40463959.
  80. ^ Averianov, A. O.; Sues, H.-D. (2025). "A new ornithomimid theropod from the Upper Cretaceous Bissekty Formation of Uzbekistan". Journal of Vertebrate Paleontology. 44 (3). e2433759. doi:10.1080/02724634.2024.2433759.
  81. ^ Coria, R. A.; Cerda, A. A.; Escaso, F.; Baiano, M. A.; Bellardini, F.; Braun, A.; Coria, L. M.; Gutierrez, J. M.; Pino, D.; Windholz, G. J.; Currie, P. J.; Ortega, F. (2025). "First Valanginian (Early Cretaceous) ornithopod (Dinosauria, Ornithischia) from Patagonia". Cretaceous Research. 166 106027. Bibcode:2025CrRes.16606027C. doi:10.1016/j.cretres.2024.106027.
  82. ^ Maidment, S. C. R.; Barrett, P. M. (2025). "Enigmacursor mollyborthwickae, a neornithischian dinosaur from the Upper Jurassic Morrison Formation of the western USA". Royal Society Open Science. 12 (6). 242195. Bibcode:2025RSOS...1242195M. doi:10.1098/rsos.242195. PMC 12188093. PMID 40568542.
  83. ^ a b Qiu, Rui; Wang, Xiaolin; Jiang, Shunxing; Meng, Jin; Zhou, Zhonghe (2025-02-22). "Two new compsognathid-like theropods show diversified predation strategies in theropod dinosaurs". National Science Review. 12 (5) nwaf068. doi:10.1093/nsr/nwaf068. ISSN 2095-5138. PMC 11970238. PMID 40191255.
  84. ^ Mo, Jinyou; Zhou, Xiuzhen; Fu, Qiongyao; Xiong, Duo; Hu, Minhang; Xu, Xing (2025-08-19). "A new eusauropod dinosaur from the Lower and Middle Jurassic Wangmen Formation of Ningming County, Guangxi, South China". Acta Geologica Sinica (English Edition). 99 (4): 909–924. Bibcode:2025AcGlS..99..909M. doi:10.1111/1755-6724.15331.
  85. ^ Hechenleitner, E. Martín; Martinelli, Agustín G.; Rocher, Sebastián; Fiorelli, Lucas E.; Juarez, Malena; Taborda, Jeremías R. A.; Desojo, Julia B. (2025-10-15). "A long-necked early dinosaur from a newly discovered Upper Triassic basin in the Andes". Nature. 648 (8094): 634–639. Bibcode:2025Natur.648..634H. doi:10.1038/s41586-025-09634-3. ISSN 1476-4687. PMID 41094144.
  86. ^ Lockwood, Jeremy A. F.; Martill, David M.; Maidment, Susannah C. R. (2025). "The origins of neural spine elongation in iguanodontian dinosaurs and the osteology of a new sail-back styracosternan (Dinosauria, Ornithischia) from the Lower Cretaceous Wealden Group of England". Papers in Palaeontology. 11 (4) e70034. Bibcode:2025PPal...1170034L. doi:10.1002/spp2.70034. ISSN 2056-2802.
  87. ^ Li, Ning; Zhang, Xiaoqin; Ren, Xinxin; Li, Daqing; You, Hailu (2025-05-23). "A new eusauropod (Dinosauria, Sauropodomorpha) from the Middle Jurassic of Gansu, China". Scientific Reports. 15 (1) 17936. Bibcode:2025NatSR..1517936L. doi:10.1038/s41598-025-03210-5. ISSN 2045-2322. PMC 12102329. PMID 40410409.
  88. ^ Ibiricu, L. M.; Lamanna, M. C.; Alvarez, B. N.; Cerda, I. A.; Caglianone, J. L.; Cardozo, N. V.; Luna, M.; Martínez, R. D. (2025). "Latest Cretaceous megaraptorid theropod dinosaur sheds light on megaraptoran evolution and palaeobiology". Nature Communications. 16 (1) 8298. Bibcode:2025NatCo..16.8298I. doi:10.1038/s41467-025-63793-5. PMC 12457595. PMID 40987777.
  89. ^ Voris, Jared T.; Zelenitsky, Darla K.; Kobayashi, Yoshitsugu; Modesto, Sean P.; Therrien, François; Tsutsumi, Hiroki; Chinzorig, Tsogtbaatar; Tsogtbaatar, Khishigjav (2025-06-11). "A new Mongolian tyrannosauroid and the evolution of Eutyrannosauria". Nature. 642 (8069): 973–979. Bibcode:2025Natur.642..973V. doi:10.1038/s41586-025-08964-6. ISSN 0028-0836. PMID 40500434.
  90. ^ Ezcurra, Martín D.; Garcia, Maurício Silva; Novas, Fernando E.; Müller, Rodrigo Temp; Agnolín, Federico L.; Chatterjee, Sankar (2025-05-07). "A new herrerasaurian dinosaur from the Upper Triassic Upper Maleri Formation of south-central India". Royal Society Open Science. 12 (5) 250081. Bibcode:2025RSOS...1250081E. doi:10.1098/rsos.250081. ISSN 2054-5703. PMC 12077243. PMID 40370605.
  91. ^ Dai, Hui; Hu, Xu-Feng; Tan, Chao; Ren, Xin-Xin; Ma, Qing-Yu; Wei, Guang-Biao; You, Hai-Lu (2025-11-25). "A new mamenchisaurid sauropod dinosaur from the upper jurassic of Southwest China reveals new evolutionary evidence from East Asian eusauropods". Scientific Reports. 15 (1) 43308. Bibcode:2025NatSR..1543308D. doi:10.1038/s41598-025-29995-z. ISSN 2045-2322. PMC 12686105. PMID 41291141.
  92. ^ Averianov, A. O.; Lopatin, A. V.; Atuchin, A. A. (2025). "Forelimb structure and function in a new Late Cretaceous parvicursorine theropod dinosaur from Mongolia". Proceedings of the Zoological Institute of the Russian Academy of Sciences. 329 (4): 382–408. doi:10.31610/trudyzin/2025.329.4.382.
  93. ^ Serrano-Brañas, Claudia Inés; Espinosa-Chávez, Belinda; de León-Dávila, Claudio; Maccracken, S. Augusta; Barrera-Guevara, Daniela; Torres-Rodríguez, Esperanza; Prieto-Márquez, Albert (May 2025). "A long-handed new ornithomimid dinosaur from the Campanian (Upper Cretaceous) Cerro del Pueblo Formation, Coahuila, Mexico". Cretaceous Research. 169 106087. Bibcode:2025CrRes.16906087S. doi:10.1016/j.cretres.2025.106087. ISSN 0195-6671.
  94. ^ Zanno, L. E.; Napoli, J. G. (2025). "Nanotyrannus and Tyrannosaurus coexisted at the close of the Cretaceous". Nature. 648 (8093): 357–367. Bibcode:2025Natur.648..357Z. doi:10.1038/s41586-025-09801-6. PMID 41167514.
  95. ^ Evans, Owain; Howells, Cindy; Wintle, Nathan; Benton, Michael J. (2025-09-11). "Re-assessment of a large archosaur dentary from the Late Triassic of South Wales, United Kingdom". Proceedings of the Geologists' Association. 136 (6) 101142. Bibcode:2025PrGA..13601142E. doi:10.1016/j.pgeola.2025.101142. ISSN 0016-7878.
  96. ^ Czepiński, Ł.; Madzia, D. (2025). "Exploring the diversity and disparity of rhabdodontomorph ornithopods from the Late Cretaceous European archipelago". Scientific Reports. 15 (1) 15209. Bibcode:2025NatSR..1515209C. doi:10.1038/s41598-025-98083-z. PMC 12044058. PMID 40307357.
  97. ^ Sancarlo, Franco; Mandorlo, Davide; Ford, Tracy Lee (December 18, 2025). "Reassessment of Iguanodon galvensis classification". Mesozoic. 2 (4): 302–312. doi:10.11646/mesozoic.2.4.3. ISSN 3021-1867.
  98. ^ a b Díez Díaz, Verónica; Mannion, Philip D.; Csiki-Sava, Zoltán; Upchurch, Paul (20 February 2025). "Revision of Romanian sauropod dinosaurs reveals high titanosaur diversity and body-size disparity on the latest Cretaceous Haţeg Island, with implications for titanosaurian biogeography". Journal of Systematic Palaeontology. 23 (1) 2441516. Bibcode:2025JSPal..2341516D. doi:10.1080/14772019.2024.2441516.
  99. ^ Yang, Y.; King, J. L.; Xu, X. (2025). "A new neornithischian dinosaur from the Upper Jurassic Tiaojishan Formation of northern China". PeerJ. 13 e19664. doi:10.7717/peerj.19664. PMC 12258161. PMID 40661901.
  100. ^ Dai, Hui; Ma, Qingyu; Xiong, Can; Lin, Yu; Zeng, Hui; Tan, Chao; Wang, Jun; Zhang, Yuguang; Xing, Hai (February 2025). "A new late-diverging non-hadrosaurid hadrosauroid (Dinosauria: Ornithopoda) from southwest China: support for interchange of dinosaur faunas across East Asia during the Late Cretaceous". Cretaceous Research. 166 105995. Bibcode:2025CrRes.16605995D. doi:10.1016/j.cretres.2024.105995. ISSN 0195-6671.
  101. ^ Moutrille, L.; Cau, A.; Chinzorig, T.; Escuillié, F.; Tsogtbaatar, K.; Ganzorig, B.; Mallet, C.; Godefroit, P. (2025). "A new bird-like dinosaur from the Upper Cretaceous of Mongolia with extremely robust hands supports niche partitioning among velociraptorines". Historical Biology: An International Journal of Paleobiology: 1–32. doi:10.1080/08912963.2025.2530148.
  102. ^ Longrich, Nicholas R.; Pereda-Suberbiola, Xabier; Bardet, Nathalie; Jalil, Nour-Eddine (September 2025). "A new hadrosaurid dinosaur from the late Maastrichtian Phosphates of Morocco provides evidence for an African radiation of lambeosaurines". Gondwana Research. 145: 142–151. Bibcode:2025GondR.145..142L. doi:10.1016/j.gr.2025.05.006.
  103. ^ Kellermann, Maximilian; Cuesta, Elena; Rauhut, Oliver W. M. (2025-01-14). "Re-evaluation of the Bahariya Formation carcharodontosaurid (Dinosauria: Theropoda) and its implications for allosauroid phylogeny". PLOS ONE. 20 (1) e0311096. Bibcode:2025PLoSO..2011096K. doi:10.1371/journal.pone.0311096. ISSN 1932-6203. PMC 11731741. PMID 39808629.
  104. ^ Wei, X.; Tan, Y.; Jiang, S.; Ding, J.; Li, L.; Wang, X.; Liu, Y.; Wei, G.; Li, D.; Liu, Y.; Peng, G.; Zhang, S.; Lao, C. (2025). "A new mamenchisaurid from the Upper Jurassic Suining Formation of the Sichuan Basin in China and its implication on sauropod gigantism". Scientific Reports. 15 (1) 24808. Bibcode:2025NatSR..1524808W. doi:10.1038/s41598-025-09796-0. PMC 12246415. PMID 40640344.
  105. ^ Paul, Gregory S. (2025-10-07). "Stratigraphic and anatomical evidence for multiple titanosaurid dinosaur taxa in the Late Cretaceous (Campanian-Maastrichtian) of southwestern North America". Geology of the Intermountain West. 12: 201–220. doi:10.31711/giw.v12.pp201-220.
  106. ^ Jiménez Velandia, H.; Ezcurra, M. D.; Hechenleitner, E. M.; Basilici, G.; Martinelli, A. G.; Fiorelli, L. E. (2025). "A new Late Cretaceous abelisaurid species from La Rioja Province, northwestern Argentina". Ameghiniana. 62 (6): 505–527. doi:10.5710/AMGH.24.09.2025.3653.
  107. ^ Wang, Y.-M.; Zhang, Q.-N.; Wang, Y.-C.; Xu, H.; Chen, J.; Feng, Z.; Xu, X.; Wang, T.; You, H.-L. (2025). "A new Early Jurassic dinosaur represents the earliest-diverging and oldest sauropodomorph of East Asia". Scientific Reports. 15 (1) 26749. Bibcode:2025NatSR..1526749W. doi:10.1038/s41598-025-12185-2. PMC 12287354. PMID 40702136.
  108. ^ Chen, X.-Y.; Wang, Y.-M.; Zhang, Q.-N.; Wang, T.; You, H.-L. (2025). "A new species of Xingxiulong (Dinosauria, Sauropodomorpha) from the lower Jurassic Lufeng formation of Yunnan Province, China". Historical Biology: An International Journal of Paleobiology. 37 (12): 2800–2809. Bibcode:2025HBio...37.2800C. doi:10.1080/08912963.2025.2458130.
  109. ^ Zou, Yi; Chen, Li; Wang, Tao; Wang, Guo-Fu; Zhang, Wei-Gang; Zhang, Xiao-Qin; Wang, Zhen-Ji; Wu, Xiao-Chun; You, Hai-Lu (2025-04-02). "A new metriacanthosaurid theropod dinosaur from the Middle Jurassic of Yunnan Province, China". PeerJ. 13 e19218. doi:10.7717/peerj.19218. ISSN 2167-8359. PMC 11971988. PMID 40191750.
  110. ^ Hao, M.; Li, Z.; Wang, Z.; Wang, S.; Ma, F.; Qinggele; King, J. L.; Pei, R.; Zhao, Q.; Xu, X. (March 2025). "A new oviraptorosaur from the Lower Cretaceous Miaogou Formation of western Inner Mongolia, China". Cretaceous Research. 167 106023. Bibcode:2025CrRes.16706023H. doi:10.1016/j.cretres.2024.106023.
  111. ^ Chinzorig, Tsogtbaatar; Takasaki, Ryuji; Yoshida, Junki; Tucker, Ryan T.; Buyantegsh, Batsaikhan; Mainbayar, Buuvei; Tsogtbaatar, Khishigjav; Zanno, Lindsay E. (September 17, 2025). "A domed pachycephalosaur from the early Cretaceous of Mongolia". Nature. 646 (8087): 1138–1145. doi:10.1038/s41586-025-09213-6. ISSN 1476-4687. PMID 40963012.
  112. ^ Zhang, J.; Jia, L.; Xu, L.; You, H.; Gao, D.; Liu, D.; Li, Y.; Wang, Y. (2025). "New ankylosaurid material from the Lower Cretaceous of the Ruyang Basin, Henan Province". Acta Palaeontologica Sinica. 64 (1): 60–73. doi:10.19800/j.cnki.aps.2024037.
  113. ^ Maidment, S.; Butler, R. J. (2025). "New frontiers in dinosaur exploration". Biology Letters. 21 (4). 20250045. doi:10.1098/rsbl.2025.0045. PMC 12042219. PMID 40304201.
  114. ^ Heath, J. A.; Cooper, N.; Upchurch, P.; Mannion, P. D. (2025). "Accounting for sampling heterogeneity suggests a low paleolatitude origin for dinosaurs". Current Biology. 35 (5): 941–953.e5. Bibcode:2025CBio...35..941H. doi:10.1016/j.cub.2024.12.053. PMID 39855204.
  115. ^ Sen, S.; Bagchi, S.; Ray, S. (2025). "Biogeographical network analysis of the Late Triassic dinosaurs and new insights on their geodispersal routes". Gondwana Research. 144: 167–180. Bibcode:2025GondR.144..167S. doi:10.1016/j.gr.2025.04.007.
  116. ^ Müller, Rodrigo Temp; Garcia, Maurício Silva; Soares Damke, Lísie Vitória; Fonseca, André Oliveira (2025-10-01). "Comment on "Biogeographical network analysis of the Late Triassic dinosaurs and new insights on their geodispersal routes" by Sen et al". Gondwana Research. 146: 267–269. Bibcode:2025GondR.146..267M. doi:10.1016/j.gr.2025.05.013. ISSN 1342-937X.
  117. ^ Dempsey, M.; Cross, S. R. R.; Maidment, S. C. R.; Hutchinson, J. R.; Bates, K. T. (2025). "New perspectives on body size and shape evolution in dinosaurs". Biological Reviews. 100 (5): 1829–1860. doi:10.1111/brv.70026. PMC 12407065. PMID 40344351.
  118. ^ Dempsey, M.; Allison, K.; Cross, S. R. R.; Maidment, S. C. R.; Campione, N. E.; Bates, K. T. (2025). "Limb bone robusticity is coupled with mass distribution in terrestrial tetrapods". Royal Society Open Science. 12 (9) 251103. Bibcode:2025RSOS...1251103D. doi:10.1098/rsos.251103. PMC 12419900. PMID 40933546.
  119. ^ Aureliano, T.; Maciel, V.; Costa, V. P. G.; de Paiva, A. C. F.; Santos, C. L. A.; Ghilardi, A. M. (2025). "Bone structure and the evolution of different pathways to gigantism in dinosaurs and megamammals". Journal of South American Earth Sciences. 169 105855. doi:10.1016/j.jsames.2025.105855.
  120. ^ Herculano-Houzel, S. (2023). "Theropod dinosaurs had primate-like numbers of telencephalic neurons". Journal of Comparative Neurology. 531 (9): 962–974. doi:10.1002/cne.25453. PMID 36603059. S2CID 249994109.
  121. ^ Caspar, K. R.; Gutiérrez-Ibáñez, C.; Bertrand, O. C.; Carr, T.; Colbourne, J. A. D.; Erb, A.; George, H.; Holtz, T. R.; Naish, D.; Wylie, D. R.; Hurlburt, G. R. (2024). "How smart was T. rex? Testing claims of exceptional cognition in dinosaurs and the application of neuron count estimates in palaeontological research". The Anatomical Record. 307 (12): 3685–3716. doi:10.1002/ar.25459. PMID 38668805.
  122. ^ Osvath, M.; Němec, P.; Brusatte, S. L.; Witmer, L. M. (2024). "Thought for food: the endothermic brain hypothesis". Trends in Cognitive Sciences. 28 (11): 998–1010. doi:10.1016/j.tics.2024.08.002. PMID 39242238.
  123. ^ Jensen, T. R.; Jacobs, I.; Kverková, K.; Lalić, L.; Polonyiová, A.; Stehlík, P.; Reber, S. A.; Osvath, M. (2025). "T. rex cognition was T. rex-like—A critical outlook on diverging views of the neurocognitive evolution in dinosaurs". The Anatomical Record ar.70074. doi:10.1002/ar.70074. PMID 41416937.
  124. ^ Caspar, K. R.; Gutiérrez-Ibáñez, C.; George, H.; Holtz, T. R.; Naish, D.; Hurlburt, G. R. (2025). "Endothermy, neuron counts, and other issues: Further remarks on neurocognitive evolution in fossil vertebrates". The Anatomical Record ar.70113. doi:10.1002/ar.70113. PMID 41416945.
  125. ^ Falkingham, P. L. (2025). "Reconstructing dinosaur locomotion". Biology Letters. 21 (1) 20240441. doi:10.1098/rsbl.2024.0441. PMC 11732409. PMID 39809325.
  126. ^ Prescott, T. L.; Griffin, B. W.; Demuth, O. E.; Gatesy, S. M.; Lallensack, J. N.; Falkingham, P. L. (2025). "Speed from fossil trackways: calculations not validated by extant birds on compliant substrates". Biology Letters. 21 (6). 20250191. doi:10.1098/rsbl.2025.0191. PMC 12187409. PMID 40555374.
  127. ^ Baumgart, S. L.; Grand Pré, C. A.; Bourke, J. M.; Schachner, E. R. (2025). "The living dinosaur: accomplishments and challenges of reconstructing dinosaur physiology". Biology Letters. 21 (5). 20250125. doi:10.1098/rsbl.2025.0126. PMC 12120690. PMID 40438994.
  128. ^ Chapelle, K. E. J.; Griffin, C. T.; Pol, D. (2025). "Growing with dinosaurs: a review of dinosaur reproduction and ontogeny". Biology Letters. 21 (1). 20240474. doi:10.1098/rsbl.2024.0474. PMC 11732415. PMID 39809324.
  129. ^ Holtz, T. R. (2025). "Bringing up baby: preliminary exploration of the effect of ontogenetic niche partitioning in dinosaurs versus long-term maternal care in mammals in their respective ecosystems". Italian Journal of Geosciences. 145 (2): 1–13. doi:10.3301/IJG.2026.09.
  130. ^ Schweitzer, M. H.; Zheng, W.; Dickinson, E.; Scannella, J.; Hartstone-Rose, A.; Sjövall, P.; Lindgren, J. (2025). "Taphonomic variation in vascular remains from Mesozoic non-avian dinosaurs". Scientific Reports. 15 (1). 4359. Bibcode:2025NatSR..15.4359S. doi:10.1038/s41598-025-85497-y. PMC 11799182. PMID 39910217.
  131. ^ Long, B. J. N.; Zheng, W.; Schweitzer, M.; Hallen, H. D. (2025). "Resonance Raman confirms partial haemoglobin preservation in dinosaur remains". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 481 (2321) 20250175. Bibcode:2025RSPSA.48150175L. doi:10.1098/rspa.2025.0175.
  132. ^ Sharpe, H. S.; Wang, Y.; Dudgeon, T. W.; Powers, M. J.; Whitebone, S. A.; Coppock, C. C.; Dyer, A. D.; Sullivan, C. (2025). "Skull morphology and histology indicate the presence of an unexpected buccal soft tissue structure in dinosaurs". Journal of Anatomy. 247 (3–4): 790–818. doi:10.1111/joa.14242. PMC 12397203. PMID 40114639.
  133. ^ Lautenschlager, S.; Cione, M. M.; Cowley, G.; Creasy, B. J.; Everard, H.; Graves, O. J.; Hawkins, P. E.; Plaksina, A.; Rowlstone, H. N.; Smith, A. M.; Steward, L. M. (2025). "Dinosaur skull geometry does not follow functional optimisation trends but facilitates adaptability". iScience. 28 (12) 114115. Bibcode:2025iSci...2814115L. doi:10.1016/j.isci.2025.114115. PMC 12704260. PMID 41403842.
  134. ^ Tucker, R. T.; Venter, K. E.; Lana, C.; Roberts, E. M.; Chinzorig, T.; Tsogtbaatar, K.; Zanno, L. E. (2025). "U-Pb calcite age dating of fossil eggshell as an accurate deep time geochronometer". Communications Earth & Environment. 6 (1) 872. Bibcode:2025ComEE...6..872T. doi:10.1038/s43247-025-02895-w.
  135. ^ Zhang, S.; Choi, S.; Kim, N.-H.; Xie, J.; Park, Y.; Plümper, O.; Sellés, A. G. (2025). "Biogenic origin of secondary eggshell units in dinosaur eggshells elucidates lost biomineralization process in maniraptoran dinosaurs". Science Advances. 11 (22) eadt1879. Bibcode:2025SciA...11.1879Z. doi:10.1126/sciadv.adt1879. PMC 12124393. PMID 40446053.
  136. ^ Galton, P. M.; Regalado Fernández, O. R.; Farlow, J. O. (2025). "Bones of dinosaurs and other reptiles from the Triassic-Jurassic of the Connecticut Valley: Over 200 years of published history". Revue de Paléobiologie, Genève. 44 (2): 1–45. doi:10.5281/zenodo.14793416.
  137. ^ McDonald, N. G.; LeTourneau, P. M.; Huber, P.; Olsen, P. E. (2025). "Triassic-Jurassic Lake-Shoreline Environments of the Hartford and Deerfield Basins: Fossils, Food Chains, and Facies-Linked Distribution of Dinosaur Tracks and Trackmakers". Bulletin of the Peabody Museum of Natural History. 66 (2): 339–381. Bibcode:2025BPMNH..66..202M. doi:10.3374/014.066.0202.
  138. ^ Niedźwiedzki, G.; Owocki, K.; Qvarnström, M.; Gierliński, G. D. (2025). "An ornithischian-theropod ichnoassemblage from the Norian-Rhaetian transition of Poland". Palaeogeography, Palaeoclimatology, Palaeoecology. 679 113312. Bibcode:2025PPP...67913312N. doi:10.1016/j.palaeo.2025.113312.
  139. ^ Xing, L.; Chen, Q.; Klein, H.; Persons, W. S.; Wang, D.; Qi, Q. (2025). "Lower Jurassic didactyl tracks and the related dinosaur ichnofauna of Guizhou, southwestern China". Journal of Asian Earth Sciences 106874. doi:10.1016/j.jseaes.2025.106874.
  140. ^ Milàn, J.; Vallon, L. H. (2025). "Leave tracks, not bones – a diverse Middle Jurassic dinosaur fauna from Denmark, revealed only by tracks". Italian Journal of Geosciences. 144 (2): 139–146. doi:10.3301/IJG.2025.07.
  141. ^ Xing, L.; Abbassi, N.; Chen, Q. (2025). "Newly discovered Middle Jurassic dinosaur tracks in the Baladeh region and faunal changes in northern Iran". Geobios. 92: 77–92. Bibcode:2025Geobi..92...77X. doi:10.1016/j.geobios.2025.05.004.
  142. ^ Deiques, D.; Barcelos-Silveira, A.; Dentzien-Dias, P.; Francischini, H. (2025). "Dinosaur tracks from the Guará Formation (Brazil) shed light on the biodiversity of a South American Late Jurassic humid desert". Journal of South American Earth Sciences. 153 105364. Bibcode:2025JSAES.15305364D. doi:10.1016/j.jsames.2025.105364.
  143. ^ Norris, L.; Martindale, R. C.; Satkoski, A.; Lassiter, J. C.; Fricke, H. (2025). "Calcium isotopes reveal niche partitioning within the dinosaur fauna of the carnegie quarry, Morrison formation". Palaeogeography, Palaeoclimatology, Palaeoecology. 675 113103. Bibcode:2025PPP...67513103N. doi:10.1016/j.palaeo.2025.113103.
  144. ^ Leonardi, G. (2025). "State-of-the-Art on the Brazilian Cretaceous non-avian Dinosaurs: Tracks and Bones" (PDF). Bollettino della Società Paleontologica Italiana. 64 (3): 469–493. doi:10.4435/BSPI.2025.27 (inactive 10 January 2026).{{cite journal}}: CS1 maint: DOI inactive as of January 2026 (link)
  145. ^ Duque, R.; Asakura, Y.; Oliveira, D.H.; Barbosa, R.; Barreto, A.M.F. (2025). "A new theropod dinosaur record and footprints from the Lower Cretaceous of the Triunfo Basin, northeastern Brazil". Historical Biology: An International Journal of Paleobiology: 1–13. doi:10.1080/08912963.2025.2584706.
  146. ^ Mao, L.; Wang, Q.; Huang, J.-D.; Zhu, X.-F.; Chen, Y.-B.; Wang, X.-L. (2025). "New oospecies of Parafaveoloolithus from the Lower Cretaceous of Xiuning, Anhui Province". Vertebrata PalAsiatica. doi:10.19615/j.cnki.2096-9899.250930.
  147. ^ He, Q.; Li, S.; Zhang, S.; Huang, Y.; Cao, X.; Li, H.; Zhu, M. (2025). "A new oospecies of Faveoloolithidae from the Xixia Basin, Henan Province, China and the revision of Parafaveoloolithus". Acta Palaeontologica Polonica. 70 (4): 795–810. doi:10.4202/app.01221.2024.
  148. ^ Romilio, A.; Godfrey, T.; Cleeland, M.; Duncan, R. J.; Grippi, S.; Martin, A.; Tracksdorf, H.; Wagstaff, T. (2025). "Re-investigation of the mid-Cretaceous 'Skenes Creek' dinosaur tracksite and discovery of distinct tracks at Browns Creek within the Lower Cretaceous (Aptian–Albian) Eumeralla Formation, Victoria, Australia". Historical Biology: An International Journal of Paleobiology. 38: 146–163. doi:10.1080/08912963.2025.2501784.
  149. ^ Yang, Q.; Xing, L.; Du, F.; Chen, Q.; Klein, H.; Romilio, A.; Jin, Y.; Liu, L.; Qi, J.; Zhao, M.; Chen, X.; Zhao, Y.; Wei, L.; Wan, Y. (2025). "A new sauropod-dominated tracksite from the Lower Cretaceous in central Ningxia, northwestern China, and the implications on palaeoenvironments". Swiss Journal of Palaeontology. 144 (1) 35. Bibcode:2025SwJP..144...35Y. doi:10.1186/s13358-025-00378-1.
  150. ^ Carrano, M. (2025). "First report of ceratopsians and tyrannosauroids (Dinosauria) in the Newark Canyon Formation (Lower Cretaceous) of Nevada". Journal of Paleontology. 99 (1): 192–205. Bibcode:2025JPal...99..192C. doi:10.1017/jpa.2025.4.
  151. ^ Xing, L.; Niu, K.; Chen, Q.; Klein, H.; Romilio, A.; Chen, R.; Lin, M.; Deng, K.; Tang, J. (2025). "Dinosaur track assemblages from mid-Cretaceous of Fujian Province, southeastern China: ichnotaxonomic review and faunal comparison". PeerJ. 13 e19597. doi:10.7717/peerj.19597. PMC 12204092. PMID 40585330.
  152. ^ Chen, Q.; Cheng, X.; Wang, J.; Zhao, B.; Zhang, S.; Ning, Y.; Wang, G.; He, K.; Zhang, W.; Yu, D.; Li, J.; Zou, Y.; Chen, G.; Li, M.; Cheng, H. (2025). "Geological age of the Yunyang dinosaur eggs revealed by in-situ carbonate U-Pb dating and its scientific implications". Frontiers in Earth Science. 13 1638838. Bibcode:2025FrEaS..1338838C. doi:10.3389/feart.2025.1638838.
  153. ^ Bell, P. R.; Pickles, B. J.; Ashby, S. C.; Walker, I. E.; Hurst, S.; Rampe, M.; Durkin, P.; Brown, C. M. (2025). "A ceratopsid-dominated tracksite from the Dinosaur Park Formation (Campanian) at Dinosaur Provincial Park, Alberta, Canada". PLOS ONE. 20 (7) e0324913. Bibcode:2025PLoSO..2024913B. doi:10.1371/journal.pone.0324913. PMC 12286367. PMID 40700390.
  154. ^ Yu, K.; Wu, W.; Sun, W.; Chen, J.; Wang, X. (2025). "New Dinosaur Teeth from the Upper Cretaceous Nenjiang Formation in Songliao Basin, Northeast China". Acta Geologica Sinica (English Edition). 99 (2): 320–331. Bibcode:2025AcGlS..99..320Y. doi:10.1111/1755-6724.15288.
  155. ^ Vázquez López, B. J.; Sellés, A.; Prieto-Márquez, A.; Vila, B. (2025). "Habitat preference of the dinosaurs from the Ibero-Armorican domain (Upper Cretaceous, south-western Europe)". Swiss Journal of Palaeontology. 144 4. doi:10.1186/s13358-024-00346-1.
  156. ^ Van Der Linden, T. T. P.; Wallaard, J. J. W.; De Rijke, M.; Fraaije, R. H. B. (2025). "The first description of dinosaurian eggshell from the Maastrichtian Lance Formation, Wyoming, North America". Acta Palaeontologica Polonica. 70 (3): 573–579. doi:10.4202/app.01211.2024.
  157. ^ Dean, C. D.; Chiarenza, A. A.; Doser, J. W.; Farnsworth, A.; Jones, L. A.; Lyster, S. J.; Outhwaite, C. L.; Valdes, P. J.; Butler, R. J.; Mannion, P. D. (2025). "The structure of the end-Cretaceous dinosaur fossil record in North America". Current Biology. 35 (9): 1973–1988.e6. Bibcode:2025CBio...35.1973D. doi:10.1016/j.cub.2025.03.025. PMID 40203829.
  158. ^ Flynn, A. G.; Brusatte, S. L.; Chiarenza, A. A.; García-Girón, J.; Davis, A. J.; Fenley, C. W.; Leslie, C. E.; Secord, R.; Shelley, S.; Weil, A.; Heizler, M. T.; Williamson, T. E.; Peppe, D. J. (2025). "Late-surviving New Mexican dinosaurs illuminate high end-Cretaceous diversity and provinciality". Science. 390 (6771): 400–404. Bibcode:2025Sci...390..400F. doi:10.1126/science.adw3282. PMID 41129625.
  159. ^ Weaver, L. N.; Tobin, T. S.; Sprain, C. J.; Wilson Deibel, P. K.; Korasidis, V. A.; Carvalho, M. R.; Kaskes, P.; Fendley, I. M. (2025). "Dinosaur extinction can explain continental facies shifts at the Cretaceous-Paleogene boundary". Communications Earth & Environment. 6 (1) 712. Bibcode:2025ComEE...6..712W. doi:10.1038/s43247-025-02673-8.
  160. ^ Garcia, M. S.; Martínez, R. N.; Müller, R. T. (2025). "Craniofacial lesions in the earliest predatory dinosaurs indicate intraspecific agonistic behaviour at the dawn of the dinosaur era". The Science of Nature. 112 (2). 30. Bibcode:2025SciNa.112...30G. doi:10.1007/s00114-025-01978-0. PMID 40138005.
  161. ^ Rozario, A. P.; Dasgupta, S. (2025). "Preliminary description of the first saurischian tracksite from the Lower Jurassic Kota Formation, Pranhita-Godavari Basin, Southern India". Historical Biology: An International Journal of Paleobiology. 38: 164–175. doi:10.1080/08912963.2025.2482185.
  162. ^ Blakesley, T.; dePolo, P. E.; Wade, T. J.; Ross, D. A.; Brusatte, S. L. (2025). "A new Middle Jurassic lagoon margin assemblage of theropod and sauropod dinosaur trackways from the Isle of Skye, Scotland". PLOS ONE. 20 (4). e0319862. Bibcode:2025PLoSO..2019862B. doi:10.1371/journal.pone.0319862. PMC 11964282. PMID 40173149.
  163. ^ Gesualdi, V.; Belvedere, M.; Yurac, M.; Hippler, D.; Hurem, N.; Salazar, C.; Mendez, J.; Meyer, C. A. (2025). "Diverse dinosaur tracks from the Upper Jurassic – Lower Cretaceous Chacarilla Formation of Quebrada de Arcas, northeast Chile: Evidence of high ichnodiversity in an arid palaeoenviroment". Palaeogeography, Palaeoclimatology, Palaeoecology. 675 113088. Bibcode:2025PPP...67513088G. doi:10.1016/j.palaeo.2025.113088.
  164. ^ Adams, T. L.; Price, D.; Godet, A.; Neuman, J.; Davis, C.; Lehrmann, A. A.; Lehrmann, D. J. (2025). "Revisiting Bird's swimming sauropod: new insights on Manus-dominated Dinosaur Tracks from the Mayan Dude Ranch in Bandera, Texas". Historical Biology: An International Journal of Paleobiology. 38: 112–126. doi:10.1080/08912963.2025.2461068.
  165. ^ Yin, Y.-L.; Li, Y.; Hu, J.; Zhang, H.-G. (2025). "Dinosaur teeth from the Lower Cretaceous Jiufotang Formation of western Liaoning, China". PeerJ. 13 e19013. doi:10.7717/peerj.19013. PMC 11847484. PMID 39989734.
  166. ^ Olmedo-Romaña, G. J.; Wilson Mantilla, J. A.; Tejada, J. V.; Antoine, P. O.; Burga-Castillo, M. A.; Aliaga-Castillo, A. V.; Varas-Malca, R.; Benites-Palomino, A.; Salas-Gismondi, R. (2025). "Theropod and sauropod dinosaurs from the Campanian-Maastrichtian Bagua Basin of Perú, including the first possible report of Spinosauridae in western South America". Ameghiniana. 62 (4): 259–287. Bibcode:2025Amegh..62.3627O. doi:10.5710/AMGH.13.02.2025.3627.
  167. ^ Barker, Chris T.; Naish, D.; Gostling, Neil J. (2025). "Insufficient Evidence for Spinosaurid Survival into the Latest Cretaceous: A Comment on Olmedo-Romaña et al. (2025)". Ameghiniana. 62 (6): 572–580. doi:10.5710/AMGH.10.12.2025.3673.
  168. ^ Marković, Z.; Milivojević, M.; Butler, R. J.; Barrett, P. M.; Wills, S.; van de Weerd, A. A.; Wessels, W.; Radović, P. (2025). "First dinosaur remains from Serbia: Sauropod and theropod material from the uppermost Cretaceous (Maastrichtian) of Osmakovo". Cretaceous Research. 176 106177. Bibcode:2025CrRes.17606177M. doi:10.1016/j.cretres.2025.106177.
  169. ^ Garland, K. L. S.; Hay, E. M.; Field, D. J.; Evans, A. R. (2025). "Common Developmental Origins of Beak Shapes and Evolution in Theropods". iScience. 28 (4). 112246. Bibcode:2025iSci...28k2246G. doi:10.1016/j.isci.2025.112246. PMC 11999624. PMID 40235591.
  170. ^ Marques, C. S.; Dufourq, E.; Pereira, S.; Santos, V. F.; Malafaia, E. (2025). "Enhancing the classification of isolated theropod teeth using machine learning: a comparative study". PeerJ. 13 e19116. doi:10.7717/peerj.19116. PMC 11954464. PMID 40161333.
  171. ^ Moreau, J.-D.; Sciau, J.; Jean, E. (2025). "Lower Jurassic dinosaur tracks from Peyre (Aveyron, France): Recent excavation and new ichnological data revealed by 3D imaging". Annales de Paléontologie. 111 (2). 102868. doi:10.1016/j.annpal.2025.102868.
  172. ^ Xing, L.-D.; Jiang, S.; Chen, Q.-Y.; Ye, Y.; Peng, G.-Z.; Romilio, A.; Klein, H.; Gong, Y.-Y. (2025). "Grallatorid–eubrontid tridactyl track assemblages from Lower Jurassic, Sichuan Province, China: Insights into theropod diversity, locomotion and behavior". Journal of Palaeogeography. 15 (1) 100311. doi:10.1016/j.jop.2025.100311.
  173. ^ Blakesley, T.; dePolo, P. E.; Ross, D. A.; Clark, N. D. L.; Brusatte, S. L. (2025). "Small theropod-dominated dinosaur footprint assemblages in the Middle Jurassic Valtos Sandstone and Kilmaluag Formations on the Isle of Skye, Scotland". Royal Society Open Science. 12 (9) 251016. Bibcode:2025RSOS...1251016B. doi:10.1098/rsos.251016. PMC 12441320. PMID 40969685.
  174. ^ Yurac, M.; Belvedere, M.; Salazar, C.; Méndez, J.; Meyer, C. (2025). "Upper Jurassic dinosaur tracks from the Majala Formation in the Huatacondo area (Tarapacá Basin, Chile): reappraisal of known localities and new tracksite discoveries". Swiss Journal of Palaeontology. 144 (1) 72. Bibcode:2025SwJP..144...72Y. doi:10.1186/s13358-025-00419-9.
  175. ^ Piñuela, L.; García-Ramos, J. C.; Moreno, K.; Leonardi, G.; Finsterbusch-Lagos, O. E. (2025). "Exceptional and striking 3D track-detached undertrack specimens from the Upper Jurassic of Asturias (N Spain)". Rivista Italiana di Paleontologia e Stratigrafia. 131 (1): 11–24. Bibcode:2025RIPS..13123711P. doi:10.54103/2039-4942/23711.
  176. ^ Malafaia, E.; Batista, F.; Maggia, B.; Marques, C. S.; Escaso, F.; Dantas, P.; Ortega, F. (2025). "Theropod tooth morphotypes from the Andrés fossil site: Insights into a highly diverse fauna of European Late Jurassic carnivore dinosaurs". Palaeontologia Electronica. 28 (3) 28.3.a53. Bibcode:2025PalEl..28....1R. doi:10.26879/1504.
  177. ^ Batista, F.; Castro, L.; Moita, P.; Maggia, B.; Ortega, F.; Malafaia, E. (2025). "Microwear structures and surface analysis on isolated theropod teeth from the Upper Jurassic Andrés fossil site, Pombal, Portugal". Lethaia. 58 (4): 1–16. Bibcode:2025Letha..58..4.2B. doi:10.18261/let.58.4.2.
  178. ^ Reolid, M.; Cardenal, J. (2025). "Description and interpretation of theropod tracks from the Berriasian tidal flats of the South-Iberian Palaeomargin (Internal Prebetic, S Spain)". Annales Societatis Geologorum Poloniae. 95 (3): 179–188.
  179. ^ Figueiredo, S. D. (2025). "Dinosaur Tracks of the Areia do Mastro and Papo-Seco Formations (Lower Cretaceous, Cabo Espichel): Paleobiological and Paleoenvironmental Continuities and Discontinuities". Fossil Studies. 3 (4) 18. doi:10.3390/fossils3040018.
  180. ^ Li, Y.; Zhang, L.; Jiang, S.; Wu, Q.; Qi, M.; Wang, X. (2025). "The fastest-running theropod trackway in the Cretaceous from Ordos, Inner Mongolia, China". Science China Earth Sciences. 68 (11): 3495–3505. Bibcode:2025ScChD..68.3495L. doi:10.1007/s11430-025-1657-7.
  181. ^ Xing, L.; Lallensack, J. N.; Li, D.; Zhang, L.; Chen, Q.; Qi, Q.; Yin, H.; Persons, W. S. (2025). "A new Cretaceous theropod track site from the Hekou Group, Gansu Province, China: ichnotaxonomy and preservation". Historical Biology: An International Journal of Paleobiology: 1–17. doi:10.1080/08912963.2025.2580953.
  182. ^ Buntin, R. C. C.; Moklestad, T.; Matthews, N. A.; Breithaupt, B.; Murphy, P. C.; Kapinos, I.; Noffke, N. (2025). "A new theropod dinosaur lek in the Cretaceous Dakota Sandstone (Dinosaur Ridge, Colorado, USA)". Cretaceous Research. 176 106176. Bibcode:2025CrRes.17606176B. doi:10.1016/j.cretres.2025.106176.
  183. ^ McLarty, J. A.; McKenzie, Z.; Hayes, W. K.; Clawson, R.; Baltazar, H. D.; Alves, E. F.; Nick, K. E.; Esperante, R. (2025). "Let that sink in: track depth as a driving factor in the formation of dinosaur tail traces". Historical Biology: An International Journal of Paleobiology: 1–11. doi:10.1080/08912963.2025.2481520.
  184. ^ Esperante, R.; McLarty, J. A.; Nick, K. E.; Pompe, L. R.; Biaggi, R. E.; Baltazar Medina, H. D.; Llempen, N. A.; Limachi Silvestri, Á. B.; Mamani Quispe, L. L.; Garre Cano, A. J.; Quiroga Saavedra, W.; Rocha Rodríguez, G. (2025). "Morphotypes, preservation, and taphonomy of dinosaur footprints, tail traces, and swim tracks in the largest tracksite in the world: Carreras Pampa (Upper Cretaceous), Torotoro National Park, Bolivia". PLOS ONE. 20 (12) e0335973. Bibcode:2025PLoSO..2035973E. doi:10.1371/journal.pone.0335973. PMC 12674571. PMID 41335595.
  185. ^ Averianov, A. O. (2025). "A digging theropod? Enigmatic ankylosed phalanges from the Upper Cretaceous of Uzbekistan". PalZ. 99 (2): 177–183. Bibcode:2025PalZ...99..177A. doi:10.1007/s12542-025-00724-1.
  186. ^ Ősi, A.; Kolláti, R.; Nagy, A. L. (2025). "Morphological and dental wear pattern analysis of Upper Cretaceous theropod teeth from Central Europe". Palaeobiodiversity and Palaeoenvironments. 105 (2): 499–515. Bibcode:2025PdPe..105..499O. doi:10.1007/s12549-025-00657-2.
  187. ^ Li, H.; Xu, X.; Jiang, J.; Liu, J.; Brusatte, S. L.; Bi, S. (2025). "New material of a non-averostran neotheropod dinosaur from the Lower Jurassic Lufeng Formation of Yunnan, south-western China". Zoological Journal of the Linnean Society. 204 (1). zlaf034. doi:10.1093/zoolinnean/zlaf034.
  188. ^ Cau, A.; Paterna, A. (2025). "Beyond the Stromer's Riddle: the impact of lumping and splitting hypotheses on the systematics of the giant predatory dinosaurs from northern Africa". Italian Journal of Geosciences. 144 (2): 162–185. doi:10.3301/IJG.2025.10.
  189. ^ Rocha, M. P. S.; Aureliano, T.; Holgado, B.; Santos, C. L. A.; Ghilardi, A. M. (2025). "Abelisauroids from equatorial Brazil: new records from the Açu Formation (Cenomanian) Potiguar Basin, northeast Brazil". Journal of South American Earth Sciences. 166 105755. Bibcode:2025JSAES.16605755R. doi:10.1016/j.jsames.2025.105755.
  190. ^ Pierossi, F. F.; Delcourt, R.; Casali, D. M.; Leme, J. A.; de Oliveira Martins, N.; Manzig, P.; Langer, M. C. (2025). "Convergent evolution among non-carnivorous, desert-dwelling theropods as revealed by the dentary of the noasaurid Berthasaura leopoldinae (Cretaceous of Brazil)". Palaeontology. 68 (4) e70014. Bibcode:2025Palgy..6870014P. doi:10.1111/pala.70014.
  191. ^ Sombathy, R.; O'Connor, P. M.; D'Emic, M. D. (2025). "Osteohistology of the unusually fast-growing theropod dinosaur Ceratosaurus". Journal of Anatomy. 247 (3–4): 765–789. doi:10.1111/joa.14186. PMC 12397097. PMID 39909856.
  192. ^ Seculi Pereyra, E. E.; Pérez, D. E.; Méndez, A. H. (2025). "Macroevolutionary trends in Ceratosauria body size: insights of phylogenetic comparative methods". BMC Ecology and Evolution. 25 (1). 32. Bibcode:2025BMCEE..25...32P. doi:10.1186/s12862-025-02374-y. PMC 11994025. PMID 40221646.
  193. ^ Souza, G. A.; Soares, M. B.; Weinschütz, L. C.; Kellner, A. W. A. (2025). "Growth dynamics, skeletochronology, and histovariability of the theropod dinosaur Berthasaura leopoldinae". The Anatomical Record ar.70110. doi:10.1002/ar.70110. PMID 41395875.
  194. ^ Ribeiro, T. B.; Vecchietti, L. F.; Candeiro, C. R. A.; Canale, J. I.; Bergqvist, L. P.; Brito, P. M.; Pereira, P. V. L. G. C. (2025). "Overabundance of abelisaurid teeth in the Açu Formation (Albian-Cenomanian), Potiguar Basin, Northeastern Brazil: morphometric, cladistic and machine learning approaches". Journal of Vertebrate Paleontology. 44 (6). e2487366. doi:10.1080/02724634.2025.2487366.
  195. ^ Seculi Pereyra, E. E.; Vrdoljak, J.; Ezcurra, M. D.; González-Dionis, J.; Paschetta, C.; Méndez, A. H. (2025). "Morphology of the maxilla informs about the type of predation strategy in the evolution of Abelisauridae (Dinosauria: Theropoda)". Scientific Reports. 15 (1). 7857. Bibcode:2025NatSR..15.7857P. doi:10.1038/s41598-025-87289-w. PMC 11885552. PMID 40050618.
  196. ^ Pereyra, E. E. S; Ezcurra, M. D.; Paschetta, C.; Méndez, A. H. (2025). "Building a predator: macroevolutionary patterns in the skull of abelisaurid dinosaurs". Proceedings of the Royal Society B: Biological Sciences. 292 (2058) 20250943. doi:10.1098/rspb.2025.0943. PMC 12585883. PMID 41187920.
  197. ^ Seculi Pereyra, E. E. (2025). "Orbit Shape Evolution in Abelisauridae: Macroevolutionary Trends and Functional Implications". Cretaceous Research. 181 106272. doi:10.1016/j.cretres.2025.106272.
  198. ^ Hendrickx, C.; Soto Núñez, M.; Araújo, R.; Meso, J. G.; Maganuco, S.; Ben-Salahuddin, A. (2025). "Isolated abelisaurid teeth from Gondwana and dental evolution in Abelisauridae". Ameghiniana. 62 (6): 407–451. doi:10.5710/AMGH.17.09.2025.3654.
  199. ^ Cerda, I. A.; Porfiri, J. D. (2025). "Preliminary report of abelisaurid (Dinosauria, Theropoda) tooth and tooth attachment tissues". Ameghiniana. 62 (6): 396–406. doi:10.5710/AMGH.07.08.2025.3651.
  200. ^ Méndez, A. H.; Seculi-Pereyra, E. E.; González-Dionis, J.; Vettorazi, L. F.; Paulina-Carabajal, A.; Gianechini, F. A.; Filippi, L. S.; Garrido, A. C.; Cárdenas, M.; Cruzado-Caballero, P.; Kim, D.-K.; Lee, Y.-N. (2025). "An abelisaurid humerus from the Bajo de la Carpa Formation (Upper Cretaceous, Santonian), northern Patagonia, with comments on morphological aspects of the humerus in Abelisauridae". Ameghiniana. 62 (6): 480–492. doi:10.5710/AMGH.24.09.2025.3642.
  201. ^ Paulina-Carabajal, A.; Méndez, A. H.; Ulloa-Guaiquin, K.; González-Dionis, J.; Irazoqui, F. M. (2025). "The first record of theropod dinosaur remains from the Angostura Colorada and Coli Toro formations (Campanian-Maastrichtian) in the Ingeniero Jacobacci area (Rio Negro Province, Argentina)". Ameghiniana. 62 (6): 493–504. doi:10.5710/AMGH.17.09.2025.3643.
  202. ^ Ruiz Omeñaca, J. I.; Vullo, R.; Bernárdez, E.; Buscalioni, Á. D (2009). "El primer resto directo de terópodo del Cenomaniense de la Peninsula Ibérica". Geogaceta. 47: 29–32.
  203. ^ Isasmendi, E.; Malafaia, E. (2025). "New contributions to the knowledge of Abelisauridae (Dinosauria, Theropoda) from the Upper Cretaceous Ibero-Armorican landmass". Ameghiniana. 62 (6): 452–479. doi:10.5710/AMGH.17.10.2025.3660.
  204. ^ Buffetaut, E. (2025). "Furileusaurian osteological characters in Genusaurus sisteronis Accarie et al., 1995, an abelisaurid dinosaur from the Albian (Lower Cretaceous) of south-eastern France" (PDF). Carnets natures. 12: 79–88.
  205. ^ Zurriaguz, V.; Cerroni, M. A. (2025). "Postcranial pneumaticity in abelisaurids (Dinosauria: Theropoda): the cases of Tralkasaurus cuyi, Skorpiovenator bustingorryi and Carnotaurus sastrei". Ameghiniana. doi:10.5710/AMGH.18.12.2025.3656.
  206. ^ Pradelli, L. A.; Pol, D.; Ezcurra, M. D. (2025). "The appendicular osteology of the Early Jurassic theropod Piatnitzkysaurus floresi and its implications on the morphological disparity of non-coelurosaurian tetanurans". Zoological Journal of the Linnean Society. 203 (1). zlae176. doi:10.1093/zoolinnean/zlae176.
  207. ^ Chowchuvech, W.; Manitkoon, S.; Chanthasit, P.; Chokchaloemwong, D.; Kosulawatha, W.; Ketwetsuriya, C. (2025). "Isolated theropod teeth from the Upper Jurassic to Lower Cretaceous Khorat Group: Implications for theropod diversity in Thailand". Cretaceous Research. 175 106147. Bibcode:2025CrRes.17506147C. doi:10.1016/j.cretres.2025.106147.
  208. ^ Isasmendi, E.; Chesta, E.; Páramo, A.; Pereda-Suberbiola, X. (2025). "A giant spinosaurid from the Iberian Peninsula and new data on the Early Cretaceous Iberian non-avian theropod palaeodiversity". Cretaceous Research. 173 106134. Bibcode:2025CrRes.17306134I. doi:10.1016/j.cretres.2025.106134.
  209. ^ Puntanon, K.; Samathi, A. (2025). "The occurrence of Spinosauridae (Dinosauria: Theropoda) during the Cretaceous of Asia: Implications for biogeography and distribution". Thai Geoscience Journal. 6 (9): 13–28.
  210. ^ Puntanon, K.; Suteethorn, S.; Samathi, A. (2025). "Spinosaurid theropod dinosaur remains from the Hin Lat Yao locality on Phu Wiang Mountain in Khon Kaen, Thailand, with comments on the status of Siamosaurus suteethorni". Alcheringa: An Australasian Journal of Palaeontology. 49 (3): 601–614. Bibcode:2025Alch...49..601P. doi:10.1080/03115518.2025.2540656.
  211. ^ Rauhut, O. W. M.; Canudo, J. I.; Castanera, D. (2025). "Revision of the theropod dinosaur Camarillasaurus cirugedae from the Early Cretaceous (Barremian) of Teruel province, Spain". Palaeontologia Electronica. 28 (3) 28.3.a40. doi:10.26879/1543.
  212. ^ Liu, Z.; Prendergast, A. L.; Drysdale, R.; Long, K.; May, J.-H. (2025). "The effectiveness of oxygen isotopes in Spinosaurus tooth dentine for high-resolution palaeoenvironmental reconstructions". Palaeogeography, Palaeoclimatology, Palaeoecology. 668 112908. Bibcode:2025PPP...66812908L. doi:10.1016/j.palaeo.2025.112908.
  213. ^ Malafaia, E.; Dantas, P.; Escaso, F.; Mocho, P.; Ortega, F. (2025). "Cranial osteology of a new specimen of Allosaurus Marsh, 1877 (Theropoda: Allosauridae) from the Upper Jurassic of Portugal and a specimen-level phylogenetic analysis of Allosaurus". Zoological Journal of the Linnean Society. 204 (1). zlaf029. doi:10.1093/zoolinnean/zlaf029.
  214. ^ Kotevski, J.; Duncan, R. J.; Ziegler, T.; Bevitt, J. J.; Vickers-Rich, P.; Rich, T. H.; Evans, A. R.; Poropat, S. F. (2025). "Evolutionary and paleobiogeographic implications of new carcharodontosaurian, megaraptorid, and unenlagiine theropod remains from the upper Lower Cretaceous of Victoria, southeast Australia". Journal of Vertebrate Paleontology. 44 (4). e2441903. doi:10.1080/02724634.2024.2441903.
  215. ^ Oswald, T.; Boisvert, C.; D'amore, D.; Curtice, B. (2025). ""Here be Dragons": Shed Teeth Potentially Indicate the Presence of Multiple Unidentified Allosauroids from the Early Cretaceous Cedar Mountain Formation of Utah". Journal of the Arizona-Nevada Academy of Science. 50 (2): 55–129. doi:10.2181/036.050.0204.
  216. ^ Averianov, A. O.; Kuzmin, I. T.; Skutschas, P. P.; Sues, H.-D. (2025). "First record of Carcharodontosauridae (Dinosauria, Theropoda) in the Upper Cretaceous Khodzhakul Formation of Uzbekistan". Journal of Paleontology. 99 (1): 206–218. Bibcode:2025JPal...99..206A. doi:10.1017/jpa.2025.1.
  217. ^ França, T. C.; Brilhante, N. S.; Delcourt, R.; Silva, J. L.; Hendrickx, C.; Medeiros, M. A.; Costa, F. R. (2025). "A carcharodontosaurid tooth from "Boca de Forno" Ravine of the Itapecuru Formation, Parnaíba Basin, Maranhão, Brazil". Cretaceous Research. 175 106163. Bibcode:2025CrRes.17506163D. doi:10.1016/j.cretres.2025.106163.
  218. ^ Calvo, J. O.; Porfiri, J. D.; Aranciaga Rolando, A. M.; Novas, F. E.; Dos Santos, D. D.; Wessel, D. E.; Lamanna, M. C. (2025). "Morphological and Phylogenetic Significance of the First Adult Humerus of the Patagonian Cretaceous Theropod Megaraptor namunhuaiquii Novas, 1998". Annals of Carnegie Museum. 90 (3): 161–181. doi:10.2992/007.090.0301.
  219. ^ Paulina-Carabajal, A.; Porfiri, J. D. (2025). "Novel information on the braincase of Megaraptor namunhuaiquii (Dinosauria: Theropoda) using X-ray tomography: pneumaticity, paleoneurology and their paleobiological implications". Ameghiniana. doi:10.5710/AMGH.18.10.2025.3657.
  220. ^ Morrison, C.; Scherer, C. R.; O'Callaghan, E. V.; Layton, C.; Boisvert, C.; Aranciaga Rolando, M.; Durrant, L.; Salas, P.; Allain, S. J. R.; Gascoigne, S. J. L. (2025). "Rise of the king: Gondwanan origins and evolution of megaraptoran dinosaurs". Royal Society Open Science. 12 (5). 242238. Bibcode:2025RSOS...1242238M. doi:10.1098/rsos.242238. PMC 12055284. PMID 40337259.
  221. ^ Kubo, K.; Kobayashi, Y. (2025). "Cursorial ecomorphology and temporal patterns in theropod dinosaur evolution during the mid-Cretaceous". Royal Society Open Science. 12 (1). 241178. Bibcode:2025RSOS...1241178K. doi:10.1098/rsos.241178. PMC 11732414. PMID 39816741.
  222. ^ Romilio, A.; Xing, L. (2025). "A Digital Analysis of the 'Phoenix Trackway' at the Hanxi Cretaceous Dinosaur Tracksite, China". Geosciences. 15 (5). 165. Bibcode:2025Geosc..15..165R. doi:10.3390/geosciences15050165.
  223. ^ Griffin, C. T.; Bugos, J.; Poust, A. W.; Morris, Z. S.; Sombathy, R. S.; D'Emic, M. D.; O'Connor, P. M.; Petermann, H.; Fabbri, M.; Colleary, C. (2025). "A diminutive tyrannosaur lived alongside Tyrannosaurus rex". Science. 391 (6782): 300–305. doi:10.1126/science.adx8706. PMID 41343602.
  224. ^ Voris, J. T.; Therrien, F.; Ridgely, R. C.; Witmer, L. M.; Zelenitsky, D. K. (2025). "Ontogenetic Changes in Endocranial Anatomy in Gorgosaurus libratus (Theropoda: Tyrannosauridae) Provide Insight Into the Evolution of the Tyrannosauroid Endocranium". Journal of Comparative Neurology. 533 (5). e70056. doi:10.1002/cne.70056. PMC 12036647. PMID 40293427.
  225. ^ Scherer, C. R. (2025). "Multiple lines of evidence support anagenesis in Daspletosaurus and cladogenesis in derived tyrannosaurines". Cretaceous Research. 169 106080. Bibcode:2025CrRes.16906080S. doi:10.1016/j.cretres.2025.106080.
  226. ^ Warner-Cowgill, E.; Storrs, G. W.; Rogers, R. R.; Maltese, A. E. (2025). "Cranial anatomy and stratigraphy of a new specimen of the tyrannosaurine dinosaur Daspletosaurus from the Judith River Formation of Central Montana, USA". Acta Palaeontologica Polonica. 70 (1): 159–174. doi:10.4202/app.01143.2024.
  227. ^ Coppock, C. C.; Powers, M. J.; Voris, J. T.; Currie, P. J. (2025). "First occurrence of Daspletosaurus horneri (Tyrannosauridae, Tyrannosaurinae) in the Dinosaur Park Formation of Dinosaur Provincial Park, Alberta (Treaty 7 Territory)". Historical Biology: An International Journal of Paleobiology: 1–13. doi:10.1080/08912963.2025.2532735.
  228. ^ Yun, C.-G.; Delcourt, R.; Currie, P. J. (2025). "Allometric growth and intraspecific variation of the craniomandibular bones of Tarbosaurus bataar (Theropoda, Tyrannosauridae): a geometric morphometric approach". Lethaia. 58 (4): 1–28. Bibcode:2025Letha..58....1Y. doi:10.18261/let.58.4.6.
  229. ^ Mitchell, J. L.; Barbi, M.; McKellar, R. C.; Cliveti, M.; Coulson, I. M. (2025). "In situ analysis of vascular structures in fractured Tyrannosaurus rex rib". Scientific Reports. 15 (1) 20327. Bibcode:2025NatSR..1520327M. doi:10.1038/s41598-025-06981-z. PMC 12227628. PMID 40615511.
  230. ^ Paul, G. S. (2025). "A presentation of the current data on the exceptionally diverse non-tyrannosaurid eutyrannosaur and tyrannosaurini genera and species of western North America during the end cretaceous North American interchange". Mesozoic. 2 (2): 85–138. doi:10.11646/mesozoic.2.2.1.
  231. ^ Carr, T. D. (2025). "Tyrannosaurus rex: An endangered species". Palaeontologia Electronica. 28 (1). 28.1.a16. doi:10.26879/1337.
  232. ^ Carr, Thomas D. (2025). "Observations on the skull of the type specimen of Tyrannosaurus rex Osborn, 1905". All Earth. 37 (1) 2539638: 1–66. Bibcode:2025AEart..3739638C. doi:10.1080/27669645.2025.2539638.
  233. ^ Rowe, A. J.; Rayfield, E. J. (2025). "Carnivorous dinosaur lineages adopt different skull performances at gigantic size". Current Biology. 35 (15): 3664–3673.e3. Bibcode:2025CBio...35.3664R. doi:10.1016/j.cub.2025.06.051. PMID 40763692.
  234. ^ Qiu, R.; Wang, X.; Jiang, S. (2025). Sinosauropterygid dinosaurs from the Jehol Biota. Selected Studies of Palaeontology in China (in Chinese). Shanghai Scientific and Technical Publishers. pp. 1–100. ISBN 9787547873571.
  235. ^ Delcourt, D.; Grillo, O. N.; Hendrickx, C.; Kellermann, M.; Langer, M. C. (2025). "The coelurosaur theropods of the Romualdo formation, early Cretaceous (Aptian) of Brazil: Santanaraptor placidus meets Mirischia asymmetrica". The Anatomical Record ar.70085. doi:10.1002/ar.70085. PMID 41251549.
  236. ^ Theda, D.; Nau, D.; Dederichs, R.; Schwermann, A. H. (2025). "The first ornithomimosaur remains from Germany". Acta Palaeontologica Polonica. 70 (3): 543–555. doi:10.4202/app.01262.2025.
  237. ^ Chinzorig, T.; Takasaki, R.; Chiba, K.; Fiorillo, A. R.; Kobayashi, Y.; Saneyoshi, M.; Ishigaki, S. (2025). "A potential deinocheirid ornithomimosaur from the Judith River Formation (Upper Cretaceous: Montana, U.S.A.) and its paleobiogeographic implications". Journal of Vertebrate Paleontology. 45 (2) e2536844. Bibcode:2025JVPal..4536844C. doi:10.1080/02724634.2025.2536844.
  238. ^ Salgado, L.; Coria, R. A.; Arcucci, A. B.; Chiappe, L. M. (2009). "Remains of Alvarezsauridae (Theropoda, Coelurosauria) in the Alien Formation (Campanian-Maastrichthian), in Salitral Ojo de Agua, Río Negro Province, Argentina". Andean Geology. 36 (1): 67–80. doi:10.4067/S0718-71062009000100006.
  239. ^ Coria, R. A.; Cambiaso, A. V.; Salgado, L. (2007). "New records of basal ornithopod dinosaurs in the Cretaceous of North Patagonia". Ameghiniana. 44 (2): 473–477.
  240. ^ Meso, J. G.; Choiniere, J. N.; Baiano, M. A.; Brusatte, S. L.; Canale, J. I.; Salgado, L.; Pol, D.; Pittman, M. (2025). "New information on Bonapartenykus (Alvarezsauridae: Theropoda) from the Allen Formation (middle Campanian-lower Maastrichtian) of Río Negro Province, Patagonia, Argentina clarifies the Patagonykinae body plan". PLOS ONE. 20 (1). e0308366. Bibcode:2025PLoSO..2008366M. doi:10.1371/journal.pone.0308366. PMC 11781669. PMID 39883665.
  241. ^ Windholz, G. J.; Meso, J. G.; Wedel, M. J.; Pittman, M. (2025). "First unambiguous record of pneumaticity in the axial skeleton of alvarezsaurians (Theropoda: Coelurosauria)". PLOS ONE. 20 (4). e0320121. Bibcode:2025PLoSO..2020121W. doi:10.1371/journal.pone.0320121. PMC 11964243. PMID 40173141.
  242. ^ Choiniere, J. N.; Neenan, J. M.; Schmitz, L.; Ford, D. P.; Chapelle, K. E.; Balanoff, A. M.; Sipla, J. S.; Georgi, J. A.; Walsh, S. A.; Norell, M. A.; Xu, X.; Clark, J. M.; Benson, R. B. (2021). "Evolution of vision and hearing modalities in theropod dinosaurs". Science. 372 (6542): 610–613. Bibcode:2021Sci...372..610C. doi:10.1126/science.abe7941. PMID 33958472. S2CID 233872840.
  243. ^ Manley, G. A.; Köppl, C. (2025). "When dinosaurs hear like barn owls: pitfalls and caveats in assessing hearing in dinosaurs". Biology Letters. 21 (5). 20240680. doi:10.1098/rsbl.2024.0680. PMC 12055281. PMID 40328310.
  244. ^ Wang, S.; Ding, N.; Ma, W.; Yu, W.; Zheng, T.; Choiniere, J.; Xu, X. (2025). "Direct evidence of carnivory in the early-diverging Alvarezsaurian Bannykus". The Innovation Geoscience. 3 (3) 100143. doi:10.59717/j.xinn-geo.2025.100143.
  245. ^ Nebreda, S. M.; Hernández Fernández, M.; Marugán-Lobón, J. (2025). "Macroevolutionary integration underlies limb modularity in the origin of avian flight". Biology Letters. 21 (5). 20240685. doi:10.1098/rsbl.2024.0685. PMC 12162096. PMID 40328312.
  246. ^ Smith, D. K. (2025). "Pectoral Girdle and Forelimb Muscle Reconstruction in the Basal Therizinosaur Falcarius utahensis From Central Utah". Journal of Morphology. 286 (7) e70067. Bibcode:2025JMorp.286E0067S. doi:10.1002/jmor.70067. PMID 40682630.
  247. ^ Freimuth, W. J.; Zanno, L. E. (2025). "New craniodental materials of Falcarius utahensis (Theropoda: Therizinosauria) reveal patterns of intraspecific variation and cranial evolution in early coelurosaurians". The Anatomical Record ar.70080. doi:10.1002/ar.70080. PMID 41137736.
  248. ^ Smith, D. K. (2021). "Forelimb musculature and function in the therizinosaur Nothronychus (Maniraptora, Theropoda)". Journal of Anatomy. 239 (2): 307–335. doi:10.1111/joa.13418. PMC 8273597. PMID 33665832. S2CID 232124454.
  249. ^ Smith, D. K. (2025). "Forelimb biomechanics in the derived therizinosaur Nothronychus and its relation to the origin of the avian wing". Scientific Reports. 15 (1) 36551. Bibcode:2025NatSR..1536551S. doi:10.1038/s41598-025-19549-8. PMC 12541032. PMID 41120440.
  250. ^ Napoli, J. G.; Fabbri, M.; Ruebenstahl, A. A.; O'Connor, J. K.; Bhullar, B.-A. S.; Norell, M. A. (2025). "Reorganization of the theropod wrist preceded the origin of avian flight". Nature. 644 (8077): 699–705. Bibcode:2025Natur.644..699N. doi:10.1038/s41586-025-09232-3. PMID 40634603.
  251. ^ Mead, A.; Funston, G.; Brusatte, S. (2025). "Forelimb reduction and digit loss were evolutionarily decoupled in oviraptorosaurian theropod dinosaurs". Royal Society Open Science. 12 (3). 242114. Bibcode:2025RSOS...1242114M. doi:10.1098/rsos.242114. PMC 11937923. PMID 40144282.
  252. ^ Zhu, X.-F.; Chang, F.; Li, Y.; Zhang, X.-H.; Gao, D.-S.; Wang, Q.; Qiu, R.; Wang, X.-L.; Liu, D.; Jia, S-H.; Jia, G.-H.; Zhang, J.-H.; Xu, L. (2025). "The first discovery of non-avian dinosaur egg clutch (Macroolithus yaotunensis, Elongatoolithidae) from the Upper Cretaceous Qiupa Formation of Tantou Basin". Vertebrata PalAsiatica. 63 (2): 159–172. doi:10.19615/j.cnki.2096-9899.250212.
  253. ^ Wang, Q.; Dong, Z.; Mao, L.; Zhu, X.-F.; Chen, Y.-B.; Huang, J.-D.; Ding, H.-D. (2025). "The first discovery of non-avian dinosaur egg and bone fossils in the Hefei Basin". Vertebrata PalAsiatica. 63 (3): 248–252. doi:10.19615/j.cnki.2096-9899.250618.
  254. ^ Foster, W.; Norell, M. A.; Balanoff, A. M. (2025). "Two new specimens of Conchoraptor gracilis (Theropoda, Oviraptorosauria) from the Late Cretaceous of Mongolia". American Museum Novitates (4033): 1–66. doi:10.1206/4033.1. hdl:2246/7397.
  255. ^ Zhu, X.; Li, Y.; Wang, Q.; Qiu, R.; Wang, B.; Chang, F.; Xu, L.; Gao, D; Liu, D.; Wang, X. (2025). "Description of a new clutch of Nanhsiungoolithus chuetienensis reveals possible parataxonomic affiliation of dromaeosaurid egg". Historical Biology: An International Journal of Paleobiology: 1–16. doi:10.1080/08912963.2025.2586230.
  256. ^ Chotard, M.; Wang, X.; Zheng, X.; Kaye, T. G.; Grosmougin, M.; Barlow, L.; Kundrát, M.; Dececchi, T. A.; Habib, M. B.; Zariwala, J.; Hartman, S.; Xu, X.; Pittman, M. (2025). "New information on the hind limb feathering, soft tissues and skeleton of Microraptor (Theropoda: Dromaeosauridae)". BMC Ecology and Evolution. 25 (1). 37. Bibcode:2025BMCEE..25...37C. doi:10.1186/s12862-025-02372-0. PMC 12020036. PMID 40275136.
  257. ^ Grosmougin, M.; Wang, X.; Zheng, X.; Kaye, T. G.; Chotard, M.; Barlow, L. A.; Dececchi, T. A.; Habib, M. B.; Zariwala, J.; Hartman, S.; Xu, X.; Pittman, M. (2025). "Forelimb feathering, soft tissues, and skeleton of the flying dromaeosaurid Microraptor". BMC Ecology and Evolution. 25 (1) 65. Bibcode:2025BMCEE..25...65G. doi:10.1186/s12862-025-02397-5. PMC 12211143. PMID 40597592.
  258. ^ Heredia, A. M.; Gianechini, F. A.; Bellardini, F.; Maniel, I. J.; Garrido, A. C.; Windholz, G. J.; Baiano, M. A.; Ciaffi, A.; Díaz-Martínez, I. (2025). "Dromaeosaurid tracks from the Upper Cretaceous Candeleros Formation of northwestern Patagonia provide additional data on the palaeobiology and palaeoecology of 'raptor' dinosaurs". Lethaia. 58 (3): 1–12. Bibcode:2025Letha..58..3.4H. doi:10.18261/let.58.3.4.
  259. ^ Motta, M. J.; Agnolín, F. L.; Brissón Egli, F.; Rozadilla, S.; Novas, F. E. (2025). "Phylogenetic relationships of Unenlagiidae among Paraves (Dinosauria)". Journal of Systematic Palaeontology. 23 (1) 2529608. Bibcode:2025JSPal..2329608M. doi:10.1080/14772019.2025.2529608.
  260. ^ Motta, M. J.; Novas, F. E. (2025). "Osteology of Austroraptor cabazai (Paraves: Theropoda): a southern gigantic unenlagiid from the Late Cretaceous of Patagonia". Historical Biology: An International Journal of Paleobiology: 1–123. doi:10.1080/08912963.2025.2537843.
  261. ^ Garros, C. W.; Powers, M. J.; Dyer, A. D.; Currie, P. J. (2025). "Osteohistological analysis of metatarsals reveals new information on pathology and life history of troodontids from the Campanian Dinosaur Park Formation, Alberta, Canada". Journal of Anatomy. 247 (3–4): 736–764. doi:10.1111/joa.14262. PMC 12397072. PMID 40252006.
  262. ^ Yun, C.-G. (2025). "Jaw biomechanics of Troodontidae and their implications for the palaeobiology of this lineage of bird-like theropod dinosaurs". Lethaia. 58 (1): 1–12. Bibcode:2025Letha..58..1.3Y. doi:10.18261/let.58.1.3.
  263. ^ Varricchio, D. J.; Hogan, J. D.; Gardner, J. D. (2025). "Troodontid specimens from the Cretaceous Two Medicine Formation of Montana (USA) and the validity of Troodon formosus". Journal of Paleontology. 99 (1): 219–240. Bibcode:2025JPal...99..219V. doi:10.1017/jpa.2024.67.
  264. ^ Caldwell, H. R.; Bedolla, E.; Varricchio, D. J. (2025). "Patterns of postcranial fusion in the emu (Dromaius novaehollandiae) and Cretaceous theropod dinosaur Troodon formosus". Journal of Vertebrate Paleontology. 44 (6). e2493166. doi:10.1080/02724634.2025.2493166.
  265. ^ Tsukiji, Y.; Hattori, S.; Azuma, Y. (2025). "First didactyl theropod track from the Lower Cretaceous Kitadani Formation, Tetori Group, Fukui, Japan". Cretaceous Research. 179 106249. doi:10.1016/j.cretres.2025.106249.
  266. ^ Kiat, Y.; Wang, X.; Zheng, X.; Wang, Y.; O'Connor, J. (2025). "Wing morphology of Anchiornis huxleyi and the evolution of molt strategies in paravian dinosaurs". Communications Biology. 8 (1) 1633. doi:10.1038/s42003-025-09019-2. PMC 12638977. PMID 41272250.
  267. ^ García-Gil, V. A.; Torices, A.; Lòpez-Miguel, M.; Montellano-Ballesteros, M. (2025). "Isolated teeth of small theropods from the El Gallo Formation, Baja California, Mexico". Cretaceous Research. 181 106292. doi:10.1016/j.cretres.2025.106292.
  268. ^ Castillo-Visa, O.; Baiano, M. A.; Brusatte, S. L.; Galobart, À.; Vila, B. (2025). "The last non-avian theropods of Europe: Palaeoecology and Biogeography inferred from dental records from the uppermost Maastrichtian of Catalonia, Spain". Cretaceous Research. 176 106199. Bibcode:2025CrRes.17606199C. doi:10.1016/j.cretres.2025.106199.
  269. ^ Beeston, S. L.; Schwarz, D.; Upchurch, P.; Barrett, P. M.; Asbach, P.; Mannion, P. D. (2025). "New information on Late Triassic sauropodomorph dinosaurs provides support for the independent acquisition of postcranial skeletal pneumaticity in avemetatarsalian lineages". Journal of Anatomy joa.70045. doi:10.1111/joa.70045. PMID 40999311.
  270. ^ Lefebvre, R.; Aubry, C.; Mallison, H.; Houssaye, A. (2025). "Evolution of the sauropodomorph astragalus: relationships with the emergence of the sauropod bauplan and weight-bearing function, and critical appraisal of evolutionary rate estimation". Zoological Journal of the Linnean Society. 204 (4) zlaf077. doi:10.1093/zoolinnean/zlaf077.
  271. ^ Filek, T.; Kranner, M.; Pabst, B.; Göhlich, U. B. (2025). "Tail of defence: an almost complete tail skeleton of Plateosaurus (Sauropodomorpha, Late Triassic) reveals possible defence strategies". Royal Society Open Science. 12 (5). 250325. Bibcode:2025RSOS...1250325F. doi:10.1098/rsos.250325. PMC 12092109. PMID 40400512.
  272. ^ Dupuis, S. F. J.; Bestwick, J.; Hansen, D. M.; Horn, E.; Wiik, S.; Frederiksen, R.; Zboray, R.; Tajbakhsh, K.; Bachmann, U.; Pabst, B.; Scheyer, T. M. (2025). "Osteology and histology of a Plateosaurus trossingensis (Dinosauria: Sauropodomorpha) from the Upper Triassic of Switzerland with an advanced chronic pathology". Swiss Journal of Palaeontology. 144 (1) 27. Bibcode:2025SwJP..144...27D. doi:10.1186/s13358-025-00368-3.
  273. ^ Fonseca, A. O.; Bem, F. P.; Müller, R. T. (2025). "Osteology of the appendicular skeleton of Macrocollum itaquii (Dinosauria: Sauropodomorpha) sheds light on early dinosaur wrist evolution". Zoological Journal of the Linnean Society. 205 (1) zlaf100. doi:10.1093/zoolinnean/zlaf100.
  274. ^ Lania, Alessandro; Pabst, Ben; Scheyer, Torsten M. (2025-07-14). "Craniomandibular osteology of a new massopodan sauropodomorph (Dinosauria: Sauropodomorpha) from the Late Triassic (latest Norian) of Canton Aargau, Switzerland". Swiss Journal of Palaeontology. 144 (1) 39. Bibcode:2025SwJP..144...39L. doi:10.1186/s13358-025-00373-6. ISSN 1664-2376. PMC 12321939. PMID 40766878.
  275. ^ Peyre de Fabrègues, C.; Apaldetti, C.; Cerda, I. A.; Abelín, D.; Martínez, R. N. (2025). "Leyesaurus marayensis (Dinosauria, Sauropodomorpha) from northwestern Argentina: an update". Ameghiniana. 62 (3): 217–227. Bibcode:2025Amegh..62.3622D. doi:10.5710/AMGH.11.12.2024.3622.
  276. ^ Mooney, E. D.; Maho, T.; Rowe, D. C. T.; Scott, D.; Reisz, R. R. (2025). "Massospondylus embryos and hatchling provide new insights into early sauropodomorph ontogeny". Swiss Journal of Palaeontology. 144 (1) 44. Bibcode:2025SwJP..144...44M. doi:10.1186/s13358-025-00382-5. PMC 12321941. PMID 40772241.
  277. ^ Abbassi, N.; Gharehbaghi, A.; Maleki, S. (2025). "New record of Late Triassic dinosaur tracks from the Shemshak Group of Alborz Mountains, Firuzkuh area, North Iran". Historical Biology: An International Journal of Paleobiology: 1–12. doi:10.1080/08912963.2025.2537165.
  278. ^ Toefy, F.; Krupandan, E.; Chinsamy, A. (2025). "Palaeobiology and osteohistology of South African sauropodomorph dinosaurs". Journal of Anatomy. 247 (3–4): 712–727. doi:10.1111/joa.14229. PMC 12397067. PMID 39960138.
  279. ^ Sundgren, J.; Chatterjee, S.; Zhang, Q.-N.; You, H.-L. (2025). "A description of new sauropodomorph cranial material from the Lower Jurassic Lufeng Formation of Yunnan Province, P. R. China". Historical Biology: An International Journal of Paleobiology: 1–19. doi:10.1080/08912963.2025.2481510.
  280. ^ Gomez, K. L. (2025). "Sauropodan niche partition during the Early Jurassic of Patagonia, Argentina". Historical Biology: An International Journal of Paleobiology: 1–14. doi:10.1080/08912963.2025.2504506.
  281. ^ Gomez, K. L.; Pol, D.; Ezcurra, M. D.; Carballido, J. L. (2025). "Osteology of the appendicular skeleton of Bagualia alba (Dinosauria, Eusauropoda) from the Lower Jurassic of Patagonia and the macroevolutionary history of early eusauropods". Cladistics. 41 (1): 70–103. doi:10.1111/cla.12607. PMID 39887763.
  282. ^ Gomez, K. L.; Paulina-Carabajal, A.; Pol, D.; Carballido, J. L. (2025). "Contributions to the sensory palaeobiology of Sauropodomorpha from the study of the endocranium of the Early Jurassic eusauropod Bagualia alba". Papers in Palaeontology. 11 (3). e70023. Bibcode:2025PPal...1170023G. doi:10.1002/spp2.70023.
  283. ^ Ren, X.; Wang, X.; Liu, Y.; Ju, S. (2025). "Late Jurassic tectono-volcanic evolution and sauropod radiation of eastern Jiangnan orogen: Evidence from Tunxi Formation, China". China Geology. 8 (4): 779–796. doi:10.31035/cg2023087 (inactive 23 November 2025).{{cite journal}}: CS1 maint: DOI inactive as of November 2025 (link)
  284. ^ Kaikaew, S.; Suteethorn, S.; Chinsamy, A. (2025). "Novel report of an osteogenic tumor in a Late Jurassic mamenchisaurid from Thailand". Journal of Anatomy. 247 (3–4): 699–711. doi:10.1111/joa.14266. PMC 12397083. PMID 40274378.
  285. ^ Yang, C.; Liu, J.; Zhang, Y.; Yang, W.; Hu, F.; Zeng, L. (2025). "The osteohistological characteristics of Mamenchisaurus guangyuanensis in Jurassic and their biological significance". Acta Palaeontologica Sinica (in Chinese). 64 (3): 342–351. doi:10.19800/j.cnki.aps.2023041.
  286. ^ Saleiro, A.; Tschopp, E. (2025). "New sauropod teeth from the Upper Jurassic of Portugal and their implications for sauropod dental evolution". Papers in Palaeontology. 11 (1). e70001. Bibcode:2025PPal...11E0001S. doi:10.1002/spp2.70001.
  287. ^ Winkler, D. E.; Tschopp, E.; Saleiro, A.; Wiesinger, R.; Kaiser, T. M. (2025). "Dental microwear texture analysis reveals behavioural, ecological and habitat signals in Late Jurassic sauropod dinosaur faunas". Nature Ecology & Evolution. 9 (9): 1719–1730. Bibcode:2025NatEE...9.1719W. doi:10.1038/s41559-025-02794-5. PMC 12420387. PMID 40681880.
  288. ^ Woodruff, D. C.; Barrett, P. M.; Ouarhache, D.; El Khanchoufi, A.; Boumir, K.; Ech-Charay, K.; Oussou, A.; Butler, R. J.; Wills, S.; Meade, L.; Smith, M.; Maidment, S. C. R. (2025). "Teeth from the Middle Jurassic of Morocco reveal the oldest turiasaurian sauropods from Africa". Acta Palaeontologica Polonica. 70 (3): 411–420. doi:10.4202/app.01214.2024.
  289. ^ Scott A., Lee; Justyna, Slowiak (2025). "Sauntering Sauropods: The Preferred Walking Speeds of the Largest Land Animals That Ever Lived". The Physics Teacher. 63 (1): 20–22. Bibcode:2025PhTea..63a..20L. doi:10.1119/5.0187569.
  290. ^ Sciscio, L.; Meyer, C. A.; Fara, E.; Landry, P.; Moreau, J.-D.; Olivier, N. (2025). "Differentiating sauropod from thyreophoran tracks: insights from the Late Jurassic Villette Tracksite (Jura, France)". Italian Journal of Geosciences. 144 (3): 388–404. doi:10.3301/IJG.2025.17.
  291. ^ Mannion, P. D.; Moore, A. J. (2025). "Critical reappraisal of a putative dicraeosaurid sauropod dinosaur from the Middle Jurassic of Gondwana and a revised view of diplodocoid evolutionary relationships and biogeography". Journal of Systematic Palaeontology. 23 (1) 2550760. Bibcode:2025JSPal..2350760M. doi:10.1080/14772019.2025.2550760.
  292. ^ Eiamlaor, K.; Suteethorn, S.; Chanthasit, P.; Suteethorn, V.; Suraprasit, K. (2025). "Pneumatic structures of sauropod cervical vertebrae from the Lower Cretaceous Sao Khua Formation of northeastern Thailand". Cretaceous Research. 176 106189. Bibcode:2025CrRes.17606189E. doi:10.1016/j.cretres.2025.106189.
  293. ^ Williams, A. R.; Harris, J. D. (2025). "Cervical ligament systems in sauropod dinosaurs: what support is there?". Vertebrate Anatomy Morphology Palaeontology. 13: 81–97. doi:10.18435/vamp29412.
  294. ^ van der Linden, T. T. P.; Taylor, M. P.; Campbell, A.; Curtice, B. D.; Dederichs, R.; Lerzo, L. N.; Whitlock, J. A.; Woodruff, D. C.; Tschopp, E. (2025). "Introduction to Diplodocoidea". Palaeontologia Electronica. 28 (2). 28.2.a27. doi:10.26879/1518.
  295. ^ D. J. Chure; J. S. McIntosh (1989). A bibliography of the Dinosauria (exclusive of the Aves) 1677–1986. Museum of Western Colorado Paleontology Series. Vol. 1. The Museum of Western Colorado, Grand Junction. pp. 1–226.
  296. ^ Bivens, G.; Greenfield, T.; Curtice, B. (2025). "The authorship of Barosaurus africanus gracilis (currently Tornieria gracilis; Dinosauria, Sauropoda), and designation of a lectotype". Bulletin of Zoological Nomenclature. 82: 175–180. doi:10.21805/bzn.v82.a030.
  297. ^ Gallagher, T.; Folkes, D.; Pittman, M.; Kaye, T. G.; Storrs, G. W.; Schein, J. (2025). "Fossilized melanosomes reveal colour patterning of a sauropod dinosaur". Royal Society Open Science. 12 (12) 251232. doi:10.1098/rsos.251232.
  298. ^ Boisvert, Colin; Bivens, Gunnar; Curtice, Brian; Wilhite, Ray; Wedel, Mathew (2025). "Census of currently known specimens of the Late Jurassic sauropod Haplocanthosaurus from the Morrison Formation, USA". Geology of the Intermountain West. 12: 1–23. doi:10.31711/giw.v12.pp1-23.
  299. ^ Garderes, J. P. (2025). "Morphology, development and ecological implications of the dentition of Bajadasaurus pronuspinax". Historical Biology: An International Journal of Paleobiology: 1–21. doi:10.1080/08912963.2025.2472157.
  300. ^ Militello, M.; Otero, A.; Carballido, J. L. (2025). "The occiput of Amargasaurus (Sauropoda, Dicraeosauridae): Reconstruction of the craniocervical muscular insertions with comments on feeding strategy". Journal of Anatomy. 248 (2) joa.70071. doi:10.1111/joa.70071. PMC 12779418.
  301. ^ Lerzo, L. N.; Gallina, P. A. (2025). "The extremely thin ilium of the sauropod dinosaur Cathartesaura anaerobica Gallina and Apesteguía 2005 (Sauropoda, Diplodocoidea) with comments on the pneumatization of the rebbachisaurid hip". Historical Biology: An International Journal of Paleobiology: 1–6. doi:10.1080/08912963.2025.2482168.
  302. ^ Páramo, A.; Mocho, P.; Escaso, F.; Ortega, F. (2025). "Evolution of hind limb morphology of Titanosauriformes (Dinosauria, Sauropoda) analyzed via 3D geometric morphometrics reveals wide-gauge posture as an exaptation for gigantism". eLife. 13 RP92498. doi:10.7554/eLife.92498. PMC 12356640. PMID 40815028.
  303. ^ Díez Díaz, V.; van Bijlert, P. A.; Sellers, W. I.; Wedel, M. J.; Schwarz, D. (2025). "Centres of rotation and osteological constraints on caudal ranges of motion in the sauropod dinosaur Giraffatitan brancai". Royal Society Open Science. 12 (8) 250851. Bibcode:2025RSOS...1250851D. doi:10.1098/rsos.250851. PMC 12345363. PMID 40809361.
  304. ^ Shan, B. (2025). "The re-description of Liaoningotitan sinensis Zhou et al., 2018". PeerJ. 13 e19154. doi:10.7717/peerj.19154. PMC 11908444. PMID 40093404.
  305. ^ Sanguino, F.; de Celis, A.; de la Horra, R.; Fernández Fernández, E.; Fernández Martínez, J.; Marcos-Fernández, F.; Pérez-García, A.; Ortega, F. (2025). "A unique association of fusioolithid dinosaur eggs from the Upper Cretaceous of Spain (Poyos, Central System)". Cretaceous Research. 174 106122. Bibcode:2025CrRes.17406122S. doi:10.1016/j.cretres.2025.106122.
  306. ^ Bell, P. R.; Woodruff, D. C.; Nguyen, K.; Mainbayar, B.; Currie, P. J. (2025). "Remarkable soft tissue anatomy recorded in titanosaur (Sauropoda) tracks from the latest Cretaceous of Mongolia". Zoological Journal of the Linnean Society. 204 (3) zlaf053. doi:10.1093/zoolinnean/zlaf053.
  307. ^ Fronimos, J. A.; Woodward, H. N. (2025). "Ontogenetic assessment from dorsal ribs in a mature titanosaur (Dinosauria, Sauropoda) from the Upper Cretaceous of Texas". Journal of Vertebrate Paleontology. 45 (3) e2559012. Bibcode:2025JVPal..4559012F. doi:10.1080/02724634.2025.2559012.
  308. ^ Wilson Mantilla, J. A.; Martins, P.; Samant, B.; Mohabey, D. (2025). "First astragalus of a titanosaur (Dinosauria: Sauropoda) from the latest Cretaceous of India and the evolution of the sauropod tarsus". Contributions from the Museum of Paleontology, University of Michigan. 38 (1): 1–15. doi:10.7302/27551.
  309. ^ Poropat, S. F.; Tosolini, A.-M. P.; Beeston, S. L.; Enchelmaier, M. J.; Pentland, A. H.; Mannion, P. D.; Upchurch, P.; Chin, K.; Korasidis, V. A.; Bell, P. R.; Enriquez, N. J.; Holman, A. I.; Brosnan, L. M.; Elson, A. L.; Tripp, M.; Scarlett, A. G.; Godel, B.; Madden, R. H. C.; Rickard, W. D. A.; Bevitt, J. J.; Tischler, T. R.; Croxford, T. L. M.; Sloan, T.; Elliott, D. A.; Grice, K. (2025). "Fossilized gut contents elucidate the feeding habits of sauropod dinosaurs". Current Biology. 35 (11): 2597–2613.e7. Bibcode:2025CBio...35.2597P. doi:10.1016/j.cub.2025.04.053. PMID 40494280.
  310. ^ Gomes Nascimento, E.; Candeiro, C.; Vidal, L.; Ferreira Oliveira, E.; Carmo Dias, T.; Brusatte, S. (2025). "Titanosauria of the Bauru Group: a summary of records and their importance for understanding the diversity of the clade in Brazil". Andean Geology. 52 (3): 343–362. Bibcode:2025AndGe..52..343G. doi:10.5027/andgeoV52n3-3797.
  311. ^ Lacerda, L.; Bandeira, K. L. N.; Navarro, B. A.; Bertolossi, M. L. P.; Gallo, V.; Silva, R. C.; Campos, D. A.; Kellner, A. W. A. (2025). "New lithostrotian specimens (Neosauropoda: Titanosauria) from the Mato Grosso State (Western Brazil) and comments about tail injuries in sauropod dinosaurs". Journal of South American Earth Sciences. 153 105336. Bibcode:2025JSAES.15305336L. doi:10.1016/j.jsames.2024.105336.
  312. ^ Averianov, A. O.; Sizov, A. V.; Grigoriev, D. V.; Kolchanov, V. V.; Skutschas, P. P. (2025). "A sauropod Tengrisaurus starkovi from the Lower Cretaceous of Transbaikalia, Russia, and Asiatic origin of Titanosauria". Cretaceous Research. 181 106271. doi:10.1016/j.cretres.2025.106271.
  313. ^ Matteoni, L.; Bellardini, F.; Romano, M. (2025). "Uncovering Los Bastos: new titanosaur specimens and palaeoecological insights from the Santonian of Patagonia, Argentina". Italian Journal of Geosciences. 145: 1–19. doi:10.3301/IJG.2026.08.
  314. ^ Fernández, M. E.; Windholz, G. J.; Zurriaguz, V. L. (2025). "Palaeohistological characterisation of the caudal pneumaticity of Rocasaurus muniozi (Sauropoda: Titanosauria)". Historical Biology: An International Journal of Paleobiology: 1–13. doi:10.1080/08912963.2025.2481526.
  315. ^ Zurriaguz, V.; Martinelli, A.; Citton, P.; Kaluza, J.; Cerda, I. (2025). "The atlas-axis complex in the titanosaur Neuquensaurus australis (Dinosauria: Sauropoda)". Historical Biology: An International Journal of Paleobiology: 1–10. doi:10.1080/08912963.2025.2486387.
  316. ^ Kim, S.; Lee, Y.-N.; Kim, N.-H.; Gihm, Y. S. (2025). "Sauropod nesting sites on mid-channel bars: Taphonomic evidence of environmental adaptation in the Lower Cretaceous Sihwa Formation, Korea". Palaeogeography, Palaeoclimatology, Palaeoecology. 676 113147. Bibcode:2025PPP...67613147K. doi:10.1016/j.palaeo.2025.113147.
  317. ^ Aureliano, T.; Almeida, W.; Fernandes, M. A.; Ghilardi, A. M. (2025). "Several occurrences of osteomyelitis in dinosaurs from a site in the Bauru Group, Cretaceous of Southeast Brazil". The Anatomical Record ar.70003. doi:10.1002/ar.70003. PMID 40448361.
  318. ^ Silva Junior, J. C. G.; Ferreira, G. S.; Martinelli, A. G.; Marinho, T. S.; Montefeltro, F. C. (2025). "Standing giants: a digital biomechanical model for bipedal postures in sauropod dinosaurs". Palaeontology. 68 (4) e70019. Bibcode:2025Palgy..6870019S. doi:10.1111/pala.70019.
  319. ^ Ruiz, J.; Romilio, A.; Saarinen, J.; Torices, A.; Jiménez-Arenas, J. M. (2025). "The body mass-maximum speed relationship and the athletic capability of giant proboscideans and sauropods". Scientific Reports. doi:10.1038/s41598-025-32536-3. PMID 41436547.
  320. ^ Romilio, A.; Park, R.; Nichols, W.; Jackson, O. (2025). "Dinosaur footprints from the Lower Jurassic (Hettangian–Sinemurian) Precipice Sandstone of the Callide Basin, Queensland, Australia". Historical Biology: An International Journal of Paleobiology. 38: 134–145. doi:10.1080/08912963.2025.2472153.
  321. ^ Becerra, M. G.; Pol, D.; Cerda, I. A.; Porro, L. B.; Rauhut, O. W. M. (2025). "Postcranial osteology of Manidens condorensis (Ornithischia: Heterodontosauridae) from the Lower Jurassic of Argentina: 3D reconstruction, histology, and phylogenetic implications". Papers in Palaeontology. 11 (6) e70053. Bibcode:2025PPal...1170053B. doi:10.1002/spp2.70053.
  322. ^ Barrett, P. M.; Maidment, S. C. R. (2025). "A Review of Nanosaurus agilis Marsh and Other Small-Bodied Morrison Formation "Ornithopods"". Bulletin of the Peabody Museum of Natural History. 66 (1): 25–50. doi:10.3374/014.066.0102.
  323. ^ Sánchez-Fenollosa, S.; Cobos, A. (2025). "New insights into the phylogeny and skull evolution of stegosaurian dinosaurs: An extraordinary cranium from the European Late Jurassic (Dinosauria: Stegosauria)". Vertebrate Zoology. 75: 147–171. doi:10.3897/vz.75.e146618.
  324. ^ Costa, F.; Maidment, S.C.R.; Sequero, C.; Crespo, V.D. (2025). "Miragaia longicollum MG 4863: New fossil and historical evidence from the most complete stegosaur from Europe". Comunicações Geológicas. 112 (1): 35–58. doi:10.34637/xs1n-3d27.
  325. ^ Maidment, Susannah C. R.; Ouarhache, Driss; Ech-charay, Kawtar; Oussou, Ahmed; Boumir, Khadija; El Khanchoufi, Abdessalam; Park, Alison; Meade, Luke E.; Woodruff, D. Cary; Wills, Simon; Smith, Mike; Barrett, Paul M.; Butler, Richard J. (27 August 2025). "Extreme armour in the world's oldest ankylosaur". Nature. 647 (8088): 121–126. Bibcode:2025Natur.647..121M. doi:10.1038/s41586-025-09453-6. PMID 40866695.
  326. ^ Rivera-Sylva, H. E.; Aguillón-Martínez, M. C.; Guzmán-Gutiérrez, J. R.; Flores-Ventura, J. (2025). "Ankylosaurians from Coahuila, Mexico". Paleontología Mexicana. 14 (1): 13–27. doi:10.22201/igl.05437652e.2025.14.1.389.
  327. ^ Cross, E.; Fraass, A. J.; Arbour, V. M. (2025). "Taxonomic utility of isolated ankylosaurian dinosaur teeth using traditional and geometric morphometrics with implications for ankylosaur paleoecology". Journal of Paleontology. 99 (2): 441–457. Bibcode:2025JPal...99..441C. doi:10.1017/jpa.2025.10117.
  328. ^ Kirkland, J. I.; Hunt-Foster, R.K.; Morgan, K.; McHugh, J. B.; Foster, J. R. (2025). "Differentiating ankylosaur species in the Upper Jurassic Morrison Formation in light of newly recovered skeletal elements of Mymoorapelta maysi from its type locality". Geology of the Intermountain West. 12: 315–393. doi:10.31711/giw.v12.pp315-393.
  329. ^ Álvarez Nogueira, Rodrigo; Agnolín, Federico L.; Rozadilla, Sebastián; Aranciaga-Rolando, Mauro; Novas, Fernando E. (2025-02-25). "Ankylosaurian remains from a new Campanian–Maastrichtian locality in Northern Patagonia, Argentina". Alcheringa: An Australasian Journal of Palaeontology. 49 (1): 69–78. Bibcode:2025Alch...49...69A. doi:10.1080/03115518.2025.2467462. ISSN 0311-5518.
  330. ^ Zheng, Wenjie; Zhao, Qi; Barrett, Paul M.; Xu, Xing (2025). "Bone histology of Liaoningosaurus paradoxus (Ornithischia: Ankylosauria) from the Lower Cretaceous of Liaoning Province, China". Journal of Vertebrate Paleontology e2566325. doi:10.1080/02724634.2025.2566325.
  331. ^ Treiber, T.; Csiki-Sava, Z.; Ebner, A. J.; Augustin, F. J. (2025). "New report of Late Cretaceous struthiosaurids from the Haţeg Basin, with an overview of the Transylvanian ankylosaur fossil record". Palaeobiodiversity and Palaeoenvironments. 105 (2): 517–543. Bibcode:2025PdPe..105..517T. doi:10.1007/s12549-025-00661-6.
  332. ^ Arbour, V. M.; Lockley, M. G.; Drysdale, E.; Rule, R.; Helm, C. W. (2025). "A new thyreophoran ichnotaxon from British Columbia, Canada confirms the presence of ankylosaurid dinosaurs in the mid Cretaceous of North America". Journal of Vertebrate Paleontology. 44 (5). e2451319. doi:10.1080/02724634.2025.2451319.
  333. ^ Yoon, H. S.; Kim, H. W.; Park, J.-Y.; Jung, S.-H.; Kong, D.-Y.; Lee, Y.-N. (2025). "First reports of a probable ankylosaurian (Thyreophora) trackway from the Jindong Formation (Cenomanian) of Goseong County, South Korea". Cretaceous Research. 178 106240. doi:10.1016/j.cretres.2025.106240.
  334. ^ Maidment, Susannah; Ouarhache, Driss; Butler, Richard J; Boumir, Khadija; Oussou, Ahmed; Ech-charay, Kawtar; El Khanchoufi, Abdessalam; Barrett, Paul M (2025-03-12). "The world's oldest cerapodan ornithischian dinosaur from the Middle Jurassic of Morocco". Royal Society Open Science. 12 (3) 241624. Bibcode:2025RSOS...1241624M. doi:10.1098/rsos.241624. ISSN 2054-5703. PMC 11896692. PMID 40078925.
  335. ^ Panciroli, Elsa; Funston, Gregory F.; Maidment, Susannah C. R.; Butler, Richard J.; Benson, Roger B. J.; Crawford, Brett L.; Fair, Matt; Fraser, Nicholas C.; Walsh, Stig (2025-03-06). "The first and most complete dinosaur skeleton from the Middle Jurassic of Scotland". Earth and Environmental Science Transactions of the Royal Society of Edinburgh: 1–12. doi:10.1017/S1755691024000148. ISSN 1755-6910.
  336. ^ Pintore, R.; Houssaye, A.; Hutchinson, J. R. (2025). "How femoral morphology informs our understanding of the evolution of ornithopod locomotion and body size". Palaeontology. 68 (4) e70016. Bibcode:2025Palgy..6870016P. doi:10.1111/pala.70016.
  337. ^ Bertozzo, F.; Kecheng, N.; Vallée Gillette, N.; Godefroit, P. (2025). "Anatomical description and digital reconstruction of the skull of Jeholosaurus shangyuanensis (Dinosauria, Ornithopoda) from China". PLOS ONE. 20 (1). e0312519. Bibcode:2025PLoSO..2012519B. doi:10.1371/journal.pone.0312519. PMC 11760024. PMID 39854443.
  338. ^ Ibiricu, L. M.; Cerda, I. A.; Caglianone, J. L.; Cardozo, N. V.; Alvarez, B. N.; Cavasin, S. A.; Casal, G. A. (2025). "Basal ornithopods from the south-central Chubut, central Patagonia: evolutionary, paleohistological, and paleoenvironmental considerations". Publicación Electrónica de la Asociación Paleontológica Argentina (in Spanish). 25 (1): 31–48. doi:10.5710/PEAPA.15.11.2024.521.
  339. ^ Bell, P. R.; Herne, M. C.; Birch, S. A.; Molnar, R. E.; Smith, E. T. (2025). "Articulated hindlimb of a small-bodied ornithopod dinosaur from the Cenomanian Griman Creek Formation of New South Wales, Australia". Alcheringa: An Australasian Journal of Palaeontology: 1–16. doi:10.1080/03115518.2025.2537025.
  340. ^ Maíllo, J.; Hidalgo-Sanz, J.; Gasca, J. M.; Canudo, J. I.; Moreno-Azanza, M. (2025). "Intraskeletal histovariability and skeletochronology in an ornithopod dinosaur from the Maestrazgo Basin (Teruel, Spain)". Journal of Anatomy. 247 (3–4): 643–664. doi:10.1111/joa.14225. PMC 12397069. PMID 39876055.
  341. ^ Lucas, S. G.; Ricketts, J. W.; Dalman, S. G. (2025). "An ornithopod dinosaur from the Lower Cretaceous of West Texas". New Mexico Museum of Natural History and Science Bulletin. 101: 291–294.
  342. ^ Gierliński, G.; Jachymek, S.; Szrek, P. (2025). "Probable rhabdodontid track from the Upper Cretaceous of Poland and associated tetrapod ichnotaxa". Italian Journal of Geosciences. 145: 1–10. doi:10.3301/IJG.2026.01.
  343. ^ Guillermo-Ochoa, A. A.; Zevallos-Valdivia, L. M.; Castro-Eguiluz, C.; Garcia-Flores, V.; Martinez, J.-N.; Silupú-Cárdenas, O. A.; Sánchez-Alva, C. I.; Epiquien-Llaja, J. L.; Pintado-Abarca, T. P.; Delgado-Quiroz, L. M.; Rodríguez-de la Rosa, R. A. (2025). "An ornithopod trackway from the Albian-Turonian Arcurquina Formation, Arequipa, Peru, and its paleoecological implications". Paleontología Mexicana. 14 (1): 1–11. doi:10.22201/igl.05437652e.2025.14.1.388.
  344. ^ Devereaux, O.; Herne, M. C.; Campione, N. E.; Bell, P. R. (2025). "Paleoneurology of the iguanodontian Fostoria dhimbangunmal from the mid-Cretaceous of Australia". Journal of Paleontology. 98 (6): 1098–1106. doi:10.1017/jpa.2024.38.
  345. ^ Sánchez-Fenollosa, S.; Verdú, F. J.; Suñer, M.; Cobos, A. (2025). "Unravelling ornithopod diversity in the Late Jurassic coastal ecosystems of eastern Iberia (Spain)". Rivista Italiana di Paleontologia e Stratigrafia. 131 (3): 529–546. doi:10.54103/2039-4942/28723.
  346. ^ Rotatori, F. M.; Escaso, F.; Camilo, B.; Bertozzo, F.; Malafaia, E.; Mateus, O.; Mocho, P.; Ortega, F.; Moreno-Azanza, M. (2025). "Evidence of large-sized ankylopollexian dinosaurs (Ornithischia: Iguanodontia) in the Upper Jurassic of Portugal". Journal of Systematic Palaeontology. 23 (1). 2470789. Bibcode:2025JSPal..2370789R. doi:10.1080/14772019.2025.2470789.
  347. ^ García-Palou, J.; Isasmendi, E.; Torices, A. (2025). "An analysis of the first fossil remains of styracosternan ornithopod dinosaurs from the Early Cretaceous of La Rioja (Spain) and its paleobiogeographical implications". Palaeontologia Electronica. 28 (2) 28.2.a34. doi:10.26879/1364.
  348. ^ Decrée, S.; Leduc, T.; Godefroit, P.; Deloule, E.; Coint, N.; Huyskens, M. H.; Mansur, E. T.; Debaille, V.; Baele, J.-M. (2025). "Analysis of Iguanodon bernissartensis teeth and bones using in-situ trace element, oxygen and Sr analyses: Implication for paleoecology, paleoenvironment and diagenesis". Palaeogeography, Palaeoclimatology, Palaeoecology 113371. doi:10.1016/j.palaeo.2025.113371.
  349. ^ Ebner, A. J.; Csiki-Sava, Z.; Treiber, T.; Totoianu, R.; Augustin, F. J. (2025). "First hadrosauroid record from Petreşti-Arini (Transylvanian Basin, Romania; Upper Cretaceous) and its implications for the evolution of the Hațeg Island vertebrate faunas". Palaeoworld. 34 (5) 200937. Bibcode:2025Palae..3400937E. doi:10.1016/j.palwor.2025.200937.
  350. ^ Jiménez-Moreno, Francisco Javier; Ramírez-Velasco, Ángel Alejandro; Ocampo-Cornejo, Patricio; Velázquez-Castro, Jorge; Palomino-Merino, Rodolfo (2025-01-01). "First Population Analysis in Hadrosauroid dinosaurs (Ornithopoda: Iguanodontia: Hadrosauroidea)". Evolving Earth. 3 100072. Bibcode:2025EvEar...300072J. doi:10.1016/j.eve.2025.100072. ISSN 2950-1172.
  351. ^ Bertozzo, F.; Tanke, D. H.; Conti, S.; Manucci, F.; Arnott, G.; Godefroit, P.; Ruffell, A.; Fowler, D.; Freedman Fowler, E. A.; Bolotsky, I. Y.; Bolotsky, Y. L.; Murphy, E. (2025). "Deciphering causes and behaviors: A recurrent pattern of tail injuries in hadrosaurid dinosaurs". iScience. 28 (11) 113739. Bibcode:2025iSci...2813739B. doi:10.1016/j.isci.2025.113739. PMID 41362767.
  352. ^ Qiu, W.; Hua, H.; Zhao, K.; Yao, H.; Han, F.; Wu, R. (2025). "The first discovery of Stromatoolithus pinglingensis in the Ganzhou Basin and a revision of Paraspheroolithus porcarboris". Historical Biology: An International Journal of Paleobiology: 1–10. doi:10.1080/08912963.2025.2581783.
  353. ^ Wang, D.; Xing, L.; Mallon, J. C.; Miyashita, T.; Liang, Z.; Zhang, X.; Ren, Z.; Liang, Z.; Xian, M. (2025). "First occurrence of the duck-billed dinosaur tribe Lambeosaurini (Hadrosauridae: Lambeosaurinae) in South China". Historical Biology: An International Journal of Paleobiology. 38: 88–100. doi:10.1080/08912963.2025.2454652.
  354. ^ Dudgeon, T. W.; Evans, D. C (2025). "Disparate feeding mechanics between two hadrosaurid dinosaurs support the potential for resource partitioning". Proceedings of the Royal Society B: Biological Sciences. 292 (2056) 20250921. doi:10.1098/rspb.2025.0921. PMC 12483637. PMID 41027477.
  355. ^ Aureliano, T.; Ghilardi, A. M.; Kaluza, J.; Martinelli, A. G. (2025). "Inside a duck-billed dinosaur: Vertebral bone microstructure of Huallasaurus (Hadrosauridae), Upper Cretaceous of Patagonia". The Anatomical Record ar.70040. doi:10.1002/ar.70040. PMID 40874500.
  356. ^ Bert, H.; Woodward, H.; Rinder, N.; Amiot, R.; Horner, J. R.; Lécuyer, C.; Sena, M.; Cubo, J. (2025). "Neonatal state and degree of necessity for parental care in Maiasaura based on inferred neonatal metabolic rates". Scientific Reports. 15 (1) 24827. Bibcode:2025NatSR..1524827B. doi:10.1038/s41598-025-06282-5. PMC 12246098. PMID 40640278.
  357. ^ van der Reest, A. J.; DuFrane, S. A.; Reyes, A.; Currie, P. J.; Scott, J. (2025). "Edmontosaurus from the Rocky Mountain foothills, Alberta, and its chronostratigraphic position in the Late Cretaceous Brazeau Formation and correlative units in western Canada". Canadian Journal of Earth Sciences. 62 (11): 1578–1602. Bibcode:2025CaJES..62.0001V. doi:10.1139/cjes-2023-0001.
  358. ^ Sereno, P. C.; Saitta, E. T.; Vidal, D.; Myhrvold, N.; Ciudad Real, M.; Baumgart, S. L.; Bop, L. L.; Keillor, T. M.; Eriksen, M.; Derstler, K. (2025). "Duck-billed dinosaur fleshy midline and hooves reveal terrestrial clay-template "mummification"". Science. 391 (6780) science.adw3536. doi:10.1126/science.adw3536. PMID 41129614.
  359. ^ Bell, P. R.; Fanti, F.; Currie, P. J.; Arbour, V. M. (2014). "A Mummified Duck-Billed Dinosaur with a Soft-Tissue Cock's Comb". Current Biology. 24 (1): 70–75. Bibcode:2014CBio...24...70B. doi:10.1016/j.cub.2013.11.008. PMID 24332547. S2CID 16303617.
  360. ^ Sharpe, H. S.; Bell, P. R.; Baylatry, I.; Sissons, R.; Sullivan, C. (2025). "Re-evaluation of a soft crested Edmontosaurin, with implications for hadrosaurid life appearance and diversity". The Anatomical Record ar.70098. doi:10.1002/ar.70098. PMID 41316906.
  361. ^ Wroblewski, A. F.-J. (2025). "Southernmost record of the pachycephalosaurine Stygimoloch spinifer and palaeobiogeography of latest Cretaceous North American dinosaurs". Lethaia. 57 (4): 1–10. doi:10.18261/let.57.4.7.
  362. ^ Ishikawa, A.; Zheng, W.; Imai, T.; Hattori, S.; Shibata, M.; Kawabe, S.; Jin, X. (2025). "Psittacosaurus houi, a longer snouted psittacosaurid from the Lower Cretaceous Lujiatun Unit of Yixian Formation, China, with the synonymy of the unresolved genus Hongshanosaurus revisited". PeerJ. 13 e19547. doi:10.7717/peerj.19547. PMC 12248233. PMID 40656963.
  363. ^ Wang, L.; Li, X.; Wen, Q.; Chen, J.; Reisz, R. (2025). "Gastroliths in hatchling Psittacosaurus show early dietary habits". Science China Earth Sciences. 69: 340–347. Bibcode:2025ScChD.tmp..313W. doi:10.1007/s11430-025-1759-4.{{cite journal}}: CS1 maint: bibcode (link)
  364. ^ Wang, Y.-C.; Zhang, Q.-N.; You, H.-L. (2025). "Cranial osteology of Archaeoceratops oshimai (Ornithischia: Ceratopsia) and phylogenetic evaluation of basal Ceratopsia". Historical Biology: An International Journal of Paleobiology: 1–18. doi:10.1080/08912963.2025.2568096.
  365. ^ Guo, T.; He, Y.-M.; Zhao, Q. (2025). "Osteohistology on Liaoceratops yanzigouensis (Dinosauria: Neoceratopsia) from the Early Cretaceous Jehol Biota". Vertebrata PalAsiatica. doi:10.19615/j.cnki.2096-9899.250708.
  366. ^ Yun, C.-G.; Czepiński, Ł. (2025). "Craniomandibular ontogeny of protoceratopsid dinosaurs indicates the possibility of an ontogenetic dietary shift". Lethaia. 58 (3): 1–17. Bibcode:2025Letha..58..3.8Y. doi:10.18261/let.58.3.8.
  367. ^ Mallon, J.; Ryan, M.; Tokaryk, T. (2025). "A Spinops sternbergorum (Ornithischia: Ceratopsia) parietal from the Dinosaur Park Formation (upper Campanian) of Muddy Lake, Saskatchewan". The Canadian Field-Naturalist. 138 (4): 294–299. doi:10.22621/cfn.v138i4.3451.
  368. ^ Mallon, J.; Roloson, M.; Bamforth, E.; Scannella, J. B.; Ryan, M. J. (2025). "The Canadian fossil record supports anagenesis in Triceratops (Ornithischia, Ceratopsia)". Canadian Journal of Earth Sciences. 62 (7): 1222–1236. Bibcode:2025CaJES..62.0170M. doi:10.1139/cjes-2024-0170.
  369. ^ Obuszewski, K. D.; Smith, N. A.; Brown, G. R. (2025). "An osteohistological analysis of Triceratops (Ornithischia: Ceratopsidae) cranial ornamentation". The Anatomical Record ar.70117. doi:10.1002/ar.70117. PMID 41416512.
  370. ^ Enriquez, N. J.; Campione, N. E.; Hendrickx, C.; Bell, P. R. (2025). "Epidermal scale growth, allometry and function in non-avian dinosaurs and extant reptiles". Journal of Anatomy. 247 (2): 250–283. doi:10.1111/joa.14247. PMC 12265030. PMID 40102911.
  371. ^ Mayr, Gerald; Smith, Krister (2025-06-25). "A remarkable beak morphology in a bird skull from the Eocene of Messel (Germany) signifies unusual feeding specializations". Royal Society Open Science. 12 (6) 250620. Bibcode:2025RSOS...1250620M. doi:10.1098/rsos.250620. ISSN 2054-5703. PMC 12187392. PMID 40568553.
  372. ^ Steell, E. M.; Field, D. J.; Lubbe, P.; Brown, A.; Rawlence, N. J.; Tennyson, A. J. D. (2025). "A possible early bowerbird from the Miocene of New Zealand". Historical Biology: An International Journal of Paleobiology: 1–16. doi:10.1080/08912963.2025.2568099.
  373. ^ Zelenkov, N. (2025). "A new duck (Aves: Anatidae) from the Upper Pleistocene of Cuba". Zootaxa. 5633 (1): 139–150. doi:10.11646/zootaxa.5633.1.7. PMID 41118828.
  374. ^ Pavia, M.; Louchart, A.; Govender, R.; Delfino, M. (2025). "A new species of swift (Aves, Apodidae) from the Early Pliocene of Langebaanweg, South Africa". PalZ. 99 (2): 185–192. Bibcode:2025PalZ...99..185P. doi:10.1007/s12542-024-00711-y.
  375. ^ a b c d Mayr, Gerald; De Pietri, Vanesa L.; Proffitt, James; Blokland, Jacob C.; Clarke, Julia A.; Love, Leigh; Mannering, Al A.; Crouch, Erica M.; Reid, Catherine; Scofield, R. Paul (2025-08-12). "Multiple exceptionally preserved fossils from the Paleocene Waipara Greensand inform the diversity of the oldest stem group Sphenisciformes and the formation of their diving adaptations". Zoological Journal of the Linnean Society. 204 (4) zlaf080. doi:10.1093/zoolinnean/zlaf080. ISSN 0024-4082.
  376. ^ Zelenkov, N. V.; Gorbatcheva, V. O. (2025). "A Goshawk (Aves, Accipitriformes: Accipitridae) from the Lower Pleistocene of Crimea, and Dimorphism in the Foot Structure in Astur gentilis". Paleontological Journal. 59 (5): 562–570. Bibcode:2025PalJ...59..562Z. doi:10.1134/S0031030125600702.
  377. ^ a b De Pietri, V. L.; Scofield, R. P.; Hand, S. J.; Archer, M.; Tennyson, A. J. D.; Worthy, T. H. (2025). "Early Miocene gull-like birds (Charadriiformes: Laridae) from New Zealand". Geobios. 90: 45–57. Bibcode:2025Geobi..90...45D. doi:10.1016/j.geobios.2024.08.021.
  378. ^ Chen, Runsheng; Wang, Min; Dong, Liping; Zhou, Guowu; Xu, Xing; Deng, Ke; Xu, Liming; Zhang, Chi; Wang, Linchang; Du, Honggang; Lin, Ganmin; Lin, Min; Zhou, Zhonghe (2025-02-13). "Earliest short-tailed bird from the Late Jurassic of China". Nature. 638 (8050): 441–448. Bibcode:2025Natur.638..441C. doi:10.1038/s41586-024-08410-z. ISSN 0028-0836. PMID 39939791.
  379. ^ O'Connor, Jingmai; Wang, Xiaoli; Clark, Alexander; Kuo, Pei-Chen; Davila, Ryan; Wang, Yan; Zheng, Xiaoting; Zhou, Zhonghe (2025-12-05). "A new small-bodied longipterygid (Aves: Enantiornithes) from the Aptian Jiufotang Formation preserving unusual gastroliths". Palaeontologia Electronica. 28 (3): 1–38. doi:10.26879/1589. ISSN 1094-8074.
  380. ^ Ksepka, D. T.; Bertelli, S.; Balanoff, A. M.; Grande, L. (2025). "A new species of Morsoravidae sheds light on beak and limb morphology in stem passerines". Journal of Vertebrate Paleontology. 45 (1) e2514121. Bibcode:2025JVPal..4514121K. doi:10.1080/02724634.2025.2514121.
  381. ^ Mayr, G.; Goedert, J. L. (2025). "An unusual new species and additional fossils of the penguin-like Plotopteridae from the Paleogene of Washington State, USA". Historical Biology: An International Journal of Paleobiology: 1–20. doi:10.1080/08912963.2025.2530147.
  382. ^ Gorbatcheva, V.; Zelenkov, N.; Bertelli, S. (2025). "An Eocene New World vulture (Aves, Cathartidae) from Mongolia". Papers in Palaeontology. 11 (5) e70041. Bibcode:2025PPal...1170041G. doi:10.1002/spp2.70041.
  383. ^ Bocheński, Z. M.; Happ, J.; Salwa, G.; Tomek, T. (2025). "The first fossil bird from the Miocene swamps of Gračanica, Bosnia and Herzegovina: A novel and very unique duck". Palaeontologia Electronica. 28 (1). 28.1.a14. doi:10.26879/1512.
  384. ^ Yu, T.-Y.; Li, Z.-H. (2025). "A new fossil of Galliformes with close relationship to extant turkey and grouse from Linxia Basin". Vertebrata PalAsiatica. doi:10.19615/j.cnki.2096-9899.250731.
  385. ^ a b c Agnolín, F. L.; Álvarez Herrera, G.; Rozadilla, S.; Contreras, V. (2025). "First late Miocene bird assemblage from central Argentina, with the description of new taxa". Historical Biology: An International Journal of Paleobiology. 38: 176–192. doi:10.1080/08912963.2025.2475538.
  386. ^ Huang, Jiandong; Wang, Xuri; Cau, Andrea; Mao, Lei; Liu, Yichuan; Wang, Yang (September 26, 2025). "A new euornithine from the Lower Cretaceous (Aptian) of China reveals the first radiation of fish-eating birds". Cretaceous Research. 179 (in press) 106244. doi:10.1016/j.cretres.2025.106244. ISSN 0195-6671.
  387. ^ Li, Zhiheng; Musser, Grace; Aase, Arvid; Clarke, Julia (2025-11-24). "A new raptorial bird from the Lower Eocene Green River Formation of North America". Contributions from the Museum of Paleontology, University of Michigan. 37 (3): 69–78. doi:10.7302/27584.
  388. ^ Worthy, T. H.; Scofield, R. P.; Hand, S. J.; Archer, M.; De Pietri, V. L. (2025). "A large cracticine passerine (Aves, Artamidae, Cracticinae) from the Early Miocene, St Bathans Fauna of New Zealand". PalZ. 99 (3): 371–383. Bibcode:2025PalZ...99..371W. doi:10.1007/s12542-025-00736-x.
  389. ^ O'Connor, Jingmai K.; Atterholt, Jessie; Clark, Alexander D.; Zhou, Linqi; Peng, Cuo; Zhang, Xiaoqin; You, Hailu (June 2025). "A new enantiornithine (Aves: Ornithothoraces) from the Lower Cretaceous Xiagou Formation with unusually short pubes". Geobios. 90: 123–131. Bibcode:2025Geobi..90..123O. doi:10.1016/j.geobios.2024.11.003. ISSN 0016-6995.
  390. ^ a b Mayr, G.; Kitchener, A. C. (2025). "Two new species of larger gruiform and charadriiform birds from the London Clay of Walton-on-the-Naze (Essex, UK)". Palaeobiodiversity and Palaeoenvironments. Bibcode:2025PdPe..tmp...28M. doi:10.1007/s12549-025-00653-6.{{cite journal}}: CS1 maint: bibcode (link)
  391. ^ a b Mayr, G.; Kitchener, A. C. (2025). "The Lithornithiformes (Aves) from the early Eocene London Clay of Walton-on-the-Naze (Essex, UK)". Papers in Palaeontology. 11 (1). e1611. Bibcode:2025PPal...11E1611M. doi:10.1002/spp2.1611.
  392. ^ Irazoqui, F.; Acosta Hospitaleche, C.; Gelfo, J. N.; Paulina Carabajal, A.; Bona, P.; Acosta Burlaille, L. (2025). "Diving in the Maastrichtian of Marambio (Seymour) Island: A new member of the Neoaves in the Cretaceous Antarctic avifauna". Cretaceous Research. 179 106259. doi:10.1016/j.cretres.2025.106259.
  393. ^ Mayr, G. (2025). "A new genus and species of the Halcyornithidae (Aves) from the Eocene of Messel (Germany)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. doi:10.1127/njgpa/1295.
  394. ^ Wang, Xuri; Cau, Andrea; Wang, Yinuo; Kundrát, Martin; Zhang, Guili; Liu, Yichuan; Chiappe, Luis M. (February 2025). "A new gansuid bird (Avialae, Euornithes) from the Lower Cretaceous (Aptian) Jiufotang Formation of Jianchang, western Liaoning, China". Cretaceous Research. 166 106014. Bibcode:2025CrRes.16606014W. doi:10.1016/j.cretres.2024.106014. ISSN 0195-6671.
  395. ^ Rawlence, N. J.; Lubbe, P.; Adams, A. L.; Shepherd, L. D.; Cole, T. L.; Knapp, M.; Llamas, B.; Wood, J. R.; Mitchell, K. J.; Tennyson, A. J. D. (2025). "Ancient DNA and morphometrics reveal a new species of extinct insular shelduck from Rēkohu Chatham Islands". Zoological Journal of the Linnean Society. 204 (3) zlaf069. doi:10.1093/zoolinnean/zlaf069.
  396. ^ O'Connor, J. K. (2025). "Insights into the early evolution of modern avian physiology from fossilized soft tissues from the Mesozoic". Philosophical Transactions of the Royal Society B: Biological Sciences. 380 (1920) 20230426. doi:10.1098/rstb.2023.0426. PMC 11864835. PMID 40010392.
  397. ^ Wilken, A. T.; Sellers, K. C.; Cost, I. N.; David, J.; Middleton, K. M.; Witmer, L. M.; Holliday, C. M. (2025). "Avian cranial kinesis is the result of increased encephalization during the origin of birds". Proceedings of the National Academy of Sciences of the United States of America. 122 (13). e2411138122. Bibcode:2025PNAS..12211138W. doi:10.1073/pnas.2411138122. PMC 12002250. PMID 40096621.
  398. ^ Lowi-Merri, T. M.; Benson, R.; Hu, H.; O'Connor, J.; Claramunt, S.; Evans, D. C. (2025). "Enlargement of sternum traits facilitated the evolution of powered flight in birds". Nature Ecology & Evolution. 9 (9): 1705–1718. Bibcode:2025NatEE...9.1705L. doi:10.1038/s41559-025-02795-4. PMID 40707813.
  399. ^ Lo Coco, G. E.; Motta, M. J.; Agnolín, F. L.; Novas, F. E. (2025). "Reconstruction of pectoral musculature in non-avialan paravians and basal birds: implications in the acquisition of flapping flight". BMC Ecology and Evolution. 25 (1) 113. Bibcode:2025BMCEE..25..113L. doi:10.1186/s12862-025-02454-z. PMC 12548140. PMID 41131457.
  400. ^ Foth, C.; van de Kamp, T.; Tischlinger, H.; Kantelis, T.; Carney, R. M.; Zuber, M.; Hamann, E.; Wallaard, J. J. W.; Lenz, N.; Rauhut, O. W. M.; Frey, E. (2025). "A new Archaeopteryx from the lower Tithonian Mörnsheim Formation at Mühlheim (Late Jurassic)". Fossil Record. 28 (1): 17–43. Bibcode:2025FossR..28...17F. doi:10.3897/fr.28.e131671.
  401. ^ O'Connor, J.; Clark, A.; Kuo, P.-C.; Kiat, Y.; Fabbri, M.; Shinya, A.; Van Beek, C.; Lu, J.; Wang, M.; Hu, H. (2025). "Chicago Archaeopteryx informs on the early evolution of the avian bauplan". Nature. 641 (8065): 1201–1207. Bibcode:2025Natur.641.1201O. doi:10.1038/s41586-025-08912-4. PMID 40369075.
  402. ^ O'Connor, J. K.; Clark, A. D.; Kuo, P.-C.; Wang, M.; Shinya, A.; Van Beek, C.; Chang, H. (2025). "Avian features of Archaeopteryx feeding apparatus reflect elevated demands of flight". The Innovation 101086. doi:10.1016/j.xinn.2025.101086.
  403. ^ Duan, M.; Li, L.; Wang, S.; Stidham, T. A.; Wang, R.; Dong, X.; Hu, D. (2025). "Morphology of the forelimb of Confuciusornis and its implications for early flight evolution". Zoological Journal of the Linnean Society. 205 (3) zlaf149. doi:10.1093/zoolinnean/zlaf149.
  404. ^ Castro-Terol, J.; Pérez-Ramos, A.; O'Connor, J. K.; Sanz, J. L.; Serrano, F. J. (2025). "Micro-CT reconstruction reveals new information about the phylogenetic position and locomotion of the Early Cretaceous bird Iberomesornis romerali". Geobios. 90: 17–30. Bibcode:2025Geobi..90...17C. doi:10.1016/j.geobios.2024.11.006.
  405. ^ Li, Z.; Hu, J.; Stidham, T. A.; Ye, M.; Wang, M.; Pan, Y.; Zhao, T.; Li, J.; Zhou, Z.; Clarke, J. A. (2025). "Iridescent structural coloration in a crested Cretaceous enantiornithine bird from Jehol Biota". eLife. 14 RP103628. doi:10.7554/eLife.103628. PMC 12342819. PMID 40793940.
  406. ^ Salgado, F. L. K.; Chiappe, L. M.; Neumann, R.; Carvalho, I. S. (2025). "Evidence of piscivorous diet in an enantiornithine bird from the Lower Cretaceous of Brazil". Cretaceous Research. 175 106161. Bibcode:2025CrRes.17506161K. doi:10.1016/j.cretres.2025.106161.
  407. ^ Atterholt, J.; O'Connor, J. K.; You, H. (2025). "Osteohistology of Enantiornithine Birds from the Lower Cretaceous Xiagou Formation". Geobios. 90: 5–16. Bibcode:2025Geobi..90....5A. doi:10.1016/j.geobios.2024.08.020.
  408. ^ Wang, L.; Chen, J.; Zhou, M.; Li, G.; Li, Q.; Gui, S. (2025). "New ornithuromorph bird material from the Lower Cretaceous Yixian Formation of Weichang, Hebei Province, China". Historical Biology: An International Journal of Paleobiology: 1–10. doi:10.1080/08912963.2025.2520630.
  409. ^ Lockley, M. G.; Plint, A. G.; Helm, C. W. (2025). "Heron-like tracks from the Dunvegan Formation (Cenomanian), British Columbia: evidence for convergence in avian foot morphology". Historical Biology: An International Journal of Paleobiology: 1–14. doi:10.1080/08912963.2025.2477201.
  410. ^ Wilson, L. N.; Ksepka, D. T.; Wilson, J. P.; Gardner, J. D.; Erickson, G. M.; Brinkman, D.; Brown, C. M.; Eberle, J. J.; Organ, C. L.; Druckenmiller, P. S. (2025). "Arctic bird nesting traces back to the Cretaceous". Science. 388 (6750): 974–978. Bibcode:2025Sci...388..974W. doi:10.1126/science.adt5189. PMID 40440391.
  411. ^ Atterholt, J.; Burton, M. G.; Wedel, M. J.; Benito, J.; Fricano, E.; Field, D. J. (2025). "Osteological correlates of the respiratory and vascular systems in the neural canals of Mesozoic ornithurines Ichthyornis and Janavis". The Anatomical Record ar.70070. doi:10.1002/ar.70070. PMID 41069186.
  412. ^ Crane, A. H.; Benito, J.; Chen, A.; Ksepka, D. T.; Field, D. J. (2025). "Mandibular morphology clarifies phylogenetic relationships near the origin of crown birds". BMC Ecology and Evolution. doi:10.1186/s12862-025-02487-4. PMID 41449345.
  413. ^ Knapp, A.; Luo, C.; Tang, D.; Araújo, J. P. M. (2025). "Avian cranial evolution is influenced by shape interactions between hard and soft tissue traits". Proceedings of the Royal Society B: Biological Sciences. 292 (2061) 20250848. doi:10.1098/rspb.2025.0848. PMID 41538043.
  414. ^ Widrig, K.; Alfieri, F.; Kuo, P.-C.; James, H.; Field, D. J. (2025). "Quantitative analysis of stem-palaeognath flight capabilities sheds light on ratite dispersal and flight loss". Biology Letters. 28 (9) 20250320. doi:10.1098/rsbl.2025.0320. PMC 12440629. PMID 40957555.
  415. ^ Boast, A. P.; Wood, J. R.; Cooper, J.; Bolstridge, N.; Perry, G. L. W.; Wilmshurst, J. M. (2025). "DNA and spores from coprolites reveal that colourful truffle-like fungi endemic to New Zealand were consumed by extinct moa (Dinornithiformes)". Biology Letters. 21 (1). 20240440. doi:10.1098/rsbl.2024.0440. PMC 11732427. PMID 39809323.
  416. ^ Thomas, D. B.; Fleury, K.; Paterson, M.; Hayward, B. W.; Erickson, R.-L. (2025). "A short trackway of tridactyl fossil footprints discovered in the Kaipara region of the North Island of New Zealand". New Zealand Journal of Geology and Geophysics. 68 (4): 816–830. Bibcode:2025NZJGG..68..816T. doi:10.1080/00288306.2025.2472831.
  417. ^ Sánchez-Marco, A.; Amiot, R.; Angst, D.; Bailon, S.; Betancort, J. F.; Buffetaut, E.; García-Castellano, E.; Guillén-Vargas, L.; Lazzerini, N.; Lécuyer, C.; Lomoschitz, A.; López-Jurado, L. F.; Luján, À. H.; Perera-Betancort, M. A.; Salesa, M. J.; Sellés, A. G.; Siliceo, G. (2025). "Unraveling the Strange Case of the First Canarian Land Fauna (Lower Pliocene)". Fossil Studies. 3 (3) 13. doi:10.3390/fossils3030013.
  418. ^ McInerney, P. L.; Handley, W. D.; Worthy, T. H. (2025). "The hearing capabilities of the Dromornithidae (Aves), with inferences on acoustic communication and ecology". Journal of Anatomy. 248 (1): 82–93. doi:10.1111/joa.70016. PMC 12682595. PMID 40611399.
  419. ^ Torres, C.; Clarke, J. A.; Groenke, J. R.; Lamanna, M. C.; MacPhee, R. D. E.; Musser, G. M.; Roberts, E. M.; O'Connor, P. M. (2025). "Cretaceous Antarctic bird skull elucidates early avian ecological diversity". Nature. 638 (8049): 146–151. Bibcode:2025Natur.638..146T. doi:10.1038/s41586-024-08390-0. PMID 39910387.
  420. ^ Zonneveld, J.-P.; Naone, S.; Britt, B. (2025). "Waterbird foraging traces from the early Eocene Green River Formation, Utah". Journal of Paleontology. 98 (5): 865–884. doi:10.1017/jpa.2023.49.
  421. ^ Mayr, G.; Kitchener, A. C. (2025). "Leg bones of the anseriform taxon Nettapterornis from the London Clay of Walton-on-the-Naze and notes on the bony-toothed birds from this locality". PalZ. 99 (3): 355–369. Bibcode:2025PalZ...99..355M. doi:10.1007/s12542-025-00730-3.
  422. ^ van der Meer, M.; Langeveld, B.; Eijkelboom, I.; Schulp, A. (2025). "Getting our ducks in a row, thousands of years later". Cainozoic Research. 25 (2): 149–165.
  423. ^ Gorobets, L.; Volynskyi, T.; Knysh, M.; Kovalchuk, O. (2025). "Species composition and distribution of gallinaceous birds (Aves, Galliformes) in the south of eastern Europe during the Late Pleistocene and Holocene—a review". Boreas bor.70038. doi:10.1111/bor.70038.
  424. ^ Sellés, A.; Luján, À. H.; Casanovas-Vilar, I.; Sánchez-Marco, A.; Robles, J. M.; Alba, D. M. (2025). "Exceptionally preserved eggs show philopatric resilience of phasianids to environmental fragmentation during the Middle–Late Miocene transition in the northeastern Iberian Peninsula". Papers in Palaeontology. 11 (6) e70060. Bibcode:2025PPal...1170060S. doi:10.1002/spp2.70060.
  425. ^ Zelenkov, N. (2025). "A capercaillie (Phasianidae: Tetraonini) and a diver (Gaviidae)—unexpected large birds from the Lower Pleistocene of Crimea". PalZ. Bibcode:2025PalZ..tmp...64Z. doi:10.1007/s12542-025-00755-8.{{cite journal}}: CS1 maint: bibcode (link)
  426. ^ Parish, J. C. (2025). "The phylogenetic relationships of the Dodo (Raphus cucullatus) and the Solitaire (Pezophaps solitaria) within Columbidae (Aves: Columbiformes), including other large extinct taxa, based on morphological data". Historical Biology: An International Journal of Paleobiology. 38: 193–208. doi:10.1080/08912963.2025.2473546.
  427. ^ Cooper, J. H.; Collar, N. J.; Bouzouggar, A.; Barton, N.; Humphrey, L. (2025). "Late Pleistocene Great Bustards Otis tarda from the Maghreb, eastern Morocco". Ibis. 167 (4) ibi.13404. doi:10.1111/ibi.13404.
  428. ^ Stervander, C.; Chen, G.; Feng, S.; Mayr, G. (2025). "Nesotrochidae, fam. nov. ‒ a new name for the New World cave rails Nesotrochis spp., sister taxon of the New Zealand adzebills (Aptornithidae)" (PDF). Avian Systematics. 2: 85–98.
  429. ^ Sangster, G.; Blokland, J. C.; Lubbe, P.; Scofield, R. P.; Worthy, T. H. (2025). "Another case of island gigantism: the extinct Hodgens' Waterhen (Tribonyx hodgenorum) is a member of Porzana (Aves: Rallidae)". Journal of Ornithology. Bibcode:2025JOrni.tmp...94S. doi:10.1007/s10336-025-02316-x.{{cite journal}}: CS1 maint: bibcode (link)
  430. ^ dos Santos Lima, L.; de Araújo-Júnior, H. I.; de Souza Barbosa, F. H. (2025). "First record of a bird footprint in Brazil (Oligocene of the Taubaté Basin) and its paleoenvironmental implications". Journal of Ornithology. Bibcode:2025JOrni.tmp...76D. doi:10.1007/s10336-025-02305-0.{{cite journal}}: CS1 maint: bibcode (link)
  431. ^ Abbassi, N. (2025). "Reconstructing Miocene bird mating behavior from a fossil tracksite". Scientific Reports. 15 (1) 25563. Bibcode:2025NatSR..1525563A. doi:10.1038/s41598-025-11727-y. PMC 12267632. PMID 40670582.
  432. ^ Zelenkov, N. V. (2025). "A loon (Aves, Gaviiformes) from the Upper Miocene of Mongolia". Paleontological Journal. 59 (2): 215–220. Bibcode:2025PalJ...59..215Z. doi:10.1134/S003103012560012X.
  433. ^ Bellvé, A. M.; Wilmshurst, J. M.; Wood, J. R.; Whitehead, E.; Scofield, R. P.; Worthy, T. H.; Gaskin, C. P.; Perry, G. L. W. (2025). "Burrowing Into the Past: Extending Niche Space Models of Procellariiform Breeding Grounds by Merging Fossil and Historic Data". Diversity and Distributions. 31 (5) e70032. Bibcode:2025DivDi..3170032B. doi:10.1111/ddi.70032.
  434. ^ Tennyson, A. J. D.; Marx, F. G.; Ksepka, D. T.; Thomas, D. B. (2025). "Emperor penguin's fossil relatives inhabited subtropical waters". Journal of Paleontology. 99 (5): 1209–1217. doi:10.1017/jpa.2025.10162.
  435. ^ Mayr, G.; Goedert, J. L.; Richter, A. (2025). "Nearly complete late Eocene skull from the North Pacific elucidates the cranial morphology and affinities of the penguin-like Plotopteridae". The Science of Nature. 112 (2). 27. Bibcode:2025SciNa.112...27M. doi:10.1007/s00114-025-01977-1. PMC 11926016. PMID 40111588.
  436. ^ Mori, H. (2025). "A tarsometatarsus of a plotopterid bird from the lower Oligocene Yamaga Formation, Ainoshima, Japan". Paleontological Research. 29 250028: 292–299. Bibcode:2025PalRe..29..292M. doi:10.2517/prpsj.250028.
  437. ^ Farina, M. E.; Krapovickas, V.; Marsicano, C. A. (2025). "A new avian footprint taxon (Gragliavipes gavenskii, Ignotornidae) from the Cenozoic of South America and a reappraisal of avian ichnofamilies from the Cretaceous and Cenozoic". Historical Biology: An International Journal of Paleobiology: 1–13. doi:10.1080/08912963.2025.2481654.
  438. ^ Citron, S.; Keirnan, A.; Weisbecker, V.; James, H.; Iwaniuk, A. N. (2025). "Comparative anatomy supports the evolution of nocturnality in the extinct Hawaiian ibis Apteribis". Integrative and Comparative Biology. 66 icaf159. doi:10.1093/icb/icaf159. PMID 41416733.
  439. ^ Jones, W. W.; Rinderknecht, A.; Vezzosi, R.; Ubilla, M. (2025). "An unexpectedly large vulture (Aves: Cathartidae) from the Quaternary of South America". Historical Biology: An International Journal of Paleobiology: 1–11. doi:10.1080/08912963.2025.2546585.
  440. ^ Rossi, V.; Slater, T.; Unitt, R.; Carazo del Hoyo, B.; Terranova, E.; Gaeta, M.; McNamara, M. E.; Sardella, R.; Iurino, D. A. (2025). "Fossil feathers from the Colli Albani volcanic complex (Late Pleistocene, Central Italy) preserved in zeolites". Geology. 53 (6): 493–497. Bibcode:2025Geo....53..493R. doi:10.1130/G52971.1. hdl:2434/1164444.
  441. ^ Hunt, A. P.; Lucas, S. G. (2025). "A diverse ichnofauna of tetrapod regurgitalites from the Middle Eocene Messel Lagerstätte of Germany". New Mexico Museum of Natural History and Science Bulletin. 101: 143–152.
  442. ^ Garcia Marsà, J. A.; Agnolín, F. L.; Angst, D.; Buffetaut, E. (2025). "Paleohistological Analysis of "Terror Birds" (Phorusrhacidae, Brontornithidae): Paleobiological Inferences". Diversity. 17 (3). 153. Bibcode:2025Diver..17..153M. doi:10.3390/d17030153.
  443. ^ Degrange, F. J.; Tambussi, C. P.; Witmer, L. M. (2025). "Reversing the Trend: The Evolution of Cranial Akinesis in the Terror Birds (Cariamiformes, Phorusrhacidae)". Fossil Studies. 3 (3) 12. doi:10.3390/fossils3030012.
  444. ^ Agnolin, F. L.; Chafrat, P.; Álvarez-Herrera, G. P. (2025). "New specimens of Patagorhacos terrificus Agnolín and Chafrat, 2015 (Aves) shed light on the phylogeny and evolution of the Phorusrhacidae". Historical Biology: An International Journal of Paleobiology. 37 (7): 1744–1756. Bibcode:2025HBio...37.1744A. doi:10.1080/08912963.2025.2458127.
  445. ^ L. G. Ortiz-Pabón; S. B. Cooke; F. J. Degrange; A. Link; J. S. Pelegrin; C. A. Perdomo; R. Salas-Gismondi (2025). "Implicaciones paleoecológicas de la presencia de grandes aves terrestres (Phorusrhacidae y Brontornithidae) en el Mioceno de La Venta en Colombia". XII Congreso Latinoamericano de Paleontología: Memorias. pp. 209–210.
  446. ^ Degrange, F. J.; Cooke, S. B.; Ortiz-Pabón, L. G.; Pelegrin, J. S.; Perdomo, C. A.; Salas-Gismondi, R.; Link, A. (2025). "Too Much Terror: A Gigantic Terror Bird (Cariamiformes: Phorusrhacidae) from the Middle Miocene of La Venta, Colombia". Diversity. 17 (10) 681. Bibcode:2025Diver..17..681D. doi:10.3390/d17100681.
  447. ^ Horváth, I. (2025). "New records of fossil bird bones from the Neogene in Hungary". Zootaxa. 5627 (2): 327–342. doi:10.11646/zootaxa.5627.2.5. PMID 41119248.
  448. ^ Marqueta, M.; Núñez-Lahuerta, C.; Huguet, R.; Vergès, J. M. (2025). "The end of the Pleistocene in south-western Europe: the avian assemblages from Heinrich event 3 to the Last Glacial Maximum in the Prades mountains (north-eastern Iberian Peninsula)". Geobios. 90: 59–76. Bibcode:2025Geobi..90...59M. doi:10.1016/j.geobios.2024.11.004.
  449. ^ Syverson, V. J. P.; Prothero, D. (2025). "Reevaluating climate change responses in Rancho La Brea birds and mammals: new dates and new data". Paleobiology. 51 (4): 685–698. doi:10.1017/pab.2024.37.
  450. ^ Costa, J. P.; Cenizo, M.; Dantas, M. A. T.; Oliveira, F. M.; Macario, K. C. D.; Brito, G. R. R.; Porpino, K. O.; Araújo-Júnior, H. I. (2025). "Late Quaternary birds from Lajedo de Soledade, Rio Grande do Norte, Brazil". Quaternary International. 752 110054. doi:10.1016/j.quaint.2025.110054.
  451. ^ Hering, J.; Hering, H.; Winter, M.; Kröpelin, S.; Barthel, P. H.; Neumann, C. (2025). "First subfossil Holocene avian breeding burrows in volcanic rocks of the Tibesti Mountains (Chad)". Journal of Ornithology. 166 (3): 863–868. Bibcode:2025JOrni.166..863H. doi:10.1007/s10336-025-02268-2.
  452. ^ Zonneveld, J.-P.; Britt, B.; Brown, D.; Corlett, H.; Gingras, M. K.; Kibblewhite, T.; Kuwae, T.; Kimitsuki, R.; Melnyk, S. A.; Naone, S.; Whitaker, F.; Zonneveld, Z. E. E. (2025). "Biogenic structures produced by foraging birds in marginal marine and marginal lacustrine settings: implications for the rock record". Journal of Paleontology. 99 (Supplement S98): 1–51. Bibcode:2025JPal...99S...1Z. doi:10.1017/jpa.2024.8.
  453. ^ Pêgas, R. V.; Aureliano, T.; Holgado, B.; Almeida, W. B. S.; Santos, C. L. A.; Ghilardi, A. M. (2025). "A regurgitalite reveals a new filter-feeding pterosaur from the Santana Group". Scientific Reports. 15 (1) 37336. Bibcode:2025NatSR..1537336P. doi:10.1038/s41598-025-22983-3. PMC 12603321. PMID 41214057.
  454. ^ Cheng, X.; Jiang, S.; Bantim, R. A. M.; Sayão, J. M.; Saraiva, A. Á. F.; Meng, X.; Kellner, A. W. A.; Wang, X. (2025). "A new species of Darwinopterus (Wukongopteridae, Pterosauria) from western Liaoning provides some new information on the ontogeny of this clade". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1). e20240707. doi:10.1590/0001-3765202520240707. PMID 40053015.
  455. ^ Kligman, B. T.; Whatley, R. L.; Ramezani, J.; Marsh, A. D.; Lyson, T. R.; Fitch, A. J.; Parker, W. G.; Behrensmeyer, A. K. (2025). "Unusual bone bed reveals a vertebrate community with pterosaurs and turtles in equatorial Pangaea before the end-Triassic extinction". Proceedings of the National Academy of Sciences of the United States of America. 122 (29). e2505513122. Bibcode:2025PNAS..12205513K. doi:10.1073/pnas.2505513122. PMC 12304912. PMID 40623204.
  456. ^ Giaretta, Ariovaldo A.; Navarro, Bruno A.; Marinho, Thiago S.; Pêgas, R. Vargas (September 2025). "The first pterosaur from the Bauru Group: an azhdarchid from the Upper Cretaceous of Brazil". Papers in Palaeontology. 11 (5) e70039. Bibcode:2025PPal...1170039G. doi:10.1002/spp2.70039. ISSN 2056-2799.
  457. ^ Manitkoon, S.; Pêgas, R. V.; Nonsrirach, T.; Warapeang, P.; Lauprasert, K.; Deesri, U.; Tumpeesuwan, S.; Wongko, K.; Zhou, X. (2025). "First gnathosaurine (Pterosauria, Pterodactyloidea) from the Early Cretaceous of eastern Thailand". Cretaceous Research. 173 106135. Bibcode:2025CrRes.17306135M. doi:10.1016/j.cretres.2025.106135.
  458. ^ a b Pêgas, R. V.; Zhou, X.; Kobayashi, Y. (2025). "Azhdarchid pterosaur diversity in the Bayanshiree Formation, Upper Cretaceous of the Gobi Desert, Mongolia". PeerJ. 13 e19711. doi:10.7717/peerj.19711. PMC 12447946. PMID 40980062.
  459. ^ Thomas, H. N.; Hone, D. W. E.; Gomes, T.; Peterson, J. E. (2025). "Infernodrakon hastacollis gen. et sp. nov., a new azhdarchid pterosaur from the Hell Creek Formation of Montana, and the pterosaur diversity of Maastrichtian North America". Journal of Vertebrate Paleontology. 44 (4). e2442476. doi:10.1080/02724634.2024.2442476.
  460. ^ Hone, David W. E.; Lauer, René; Lauer, Bruce; Spindler, Frederik (2025-09-25). "A new non-pterodactyloid monofenestratan pterosaur from the Mörnsheim Formation of southern Germany". Palaeontologia Electronica. 28 (3): 1–21. doi:10.26879/1542. ISSN 1094-8074.
  461. ^ Zhou, X.; Ikegami, N.; Pêgas, R. V.; Yoshinaga, T.; Sato, T.; Mukunoki, T.; Otani, J.; Kobayashi, Y. (March 2025). "Reassessment of an azhdarchid pterosaur specimen from the Mifune Group, Upper Cretaceous of Japan". Cretaceous Research. 167 106046. Bibcode:2025CrRes.16706046Z. doi:10.1016/j.cretres.2024.106046.
  462. ^ Averianov, A. O. (2025). "A new ornithocheiran pterosaur from the Upper Cretaceous (Cenomanian) of Saratov, Russia". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1) e20241063. doi:10.1590/0001-3765202520241063. PMID 40298668.
  463. ^ Fernandes, A. E.; Tischlinger, H.; Rothgaenger, M.; Rauhut, O. W. M. (2025). "A new species and the earliest occurrence of the Gnathosaurinae (Pterosauria) from the Late Kimmeridgian of Brunn, Germany". PalZ. 99 (3): 339–353. Bibcode:2025PalZ..tmp...30F. doi:10.1007/s12542-025-00725-0.{{cite journal}}: CS1 maint: bibcode (link)
  464. ^ Araújo, E. V.; Cubo, J.; Sena, M. V. A.; Bantim, R. A. M.; Weinschütz, L. C.; Kellner, A. W. A.; Sayão, J. M. (2025). "Wing bone laminarity in pterosaurs: insights into torsional adaptations for flight evolution". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1). e20240540. doi:10.1590/0001-3765202520240540. PMID 40053014.
  465. ^ Buchmann, R.; Rodrigues, T. (2025). "Flesh and bone: The musculature and cervical movements of pterosaurs". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1). e20240478. doi:10.1590/0001-3765202520240478. PMID 40172442.
  466. ^ Buchmann, R.; Rodrigues, T. (2025). "Resistance of cervical vertebrae in response to muscular stresses in pterosaurs: implications for foraging habits and skeletal pneumatization". PeerJ. 13 e20388. doi:10.7717/peerj.20388. PMC 12662061. PMID 41321950.
  467. ^ Hone, D. W. E.; Prondvai, E. (2025). "The shape, structure, function, and evolution of the pterosaurian uropatagium". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1) e20250129. doi:10.1590/0001-3765202520250129. PMID 40960738.
  468. ^ Weems, R. E.; Bachman, J. M. (2023). "Pterosaur tracks from the Lower Cretaceous Patuxent Formation of Virginia". The Mosasaur. The Journal of the Delaware Valley Paleontological Society. 13: 71–77. doi:10.5281/zenodo.8264685.
  469. ^ McDavid, S. N.; Thomas, H. N. (2025). "The putative pterosaur tracks at Gunston Hall (Potomac Group, Cretaceous of Virginia) are examples of erosion". The Mosasaur. The Journal of the Delaware Valley Paleontological Society. 14: 13–21. doi:10.5281/zenodo.14991720.
  470. ^ Bantim, R. A. M.; de Araújo, E. V.; Araújo, A. F. S.; de Lima, F. J.; Sayão, J. M.; de Oliveira, P. V. (2025). "Extending the Geographic Range of Pterosaurs in the Araripe Basin: First Record from the Romualdo Formation (Araripe Basin) in Piauí, Brazil". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1) e20250428. doi:10.1590/0001-3765202520250428. PMID 40990783.
  471. ^ Smyth, R. S. H.; Belben, R.; Thomas, R.; Unwin, D. M. (2025). "Fatal accidents in neonatal pterosaurs and selective sampling in the Solnhofen fossil assemblage". Current Biology. 35 (19): 4606–4619.e4. Bibcode:2025CBio...35.4606S. doi:10.1016/j.cub.2025.08.006. PMID 40914163.
  472. ^ Sprague, M.; McLain, M. (2025). "A Large Scaphognathine (Pterosauria: Rhamphorhynchidae) Humerus With A Pneumatic Foramen and Enlarged Condyles from Morrison Formation, Wyoming, With a Discussion of the Implications of Humeral Condyles in Pterosaurs". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1) e20250164. doi:10.1590/0001-3765202520250164. PMID 41417321.
  473. ^ Hone, David W. E.; McDavid, Skye N. (2025-01-02). "A giant specimen of Rhamphorhynchus muensteri and comments on the ontogeny of rhamphorhynchines". PeerJ. 13 e18587. doi:10.7717/peerj.18587. ISSN 2167-8359. PMC 11700493. PMID 39763697.
  474. ^ Jagielska, N.; O'Sullivan, M.; Butler, I. B.; Challands, T. J.; Funston, G. F.; Ross, D.; Penny, A.; Brusatte, S. L. (2025). "Osteology and functional morphology of a transitional pterosaur Dearc sgiathanach from the Middle Jurassic (Bathonian) of Scotland". BMC Ecology and Evolution. 25 (1). 9. Bibcode:2025BMCEE..25....9J. doi:10.1186/s12862-024-02337-9. PMC 11761736. PMID 39849380.
  475. ^ Smyth, R. S. H.; Breithaupt, B. H.; Butler, R. J.; Falkingham, P. L.; Unwin, D. M. (2025). "Identifying pterosaur trackmakers provides critical insights into mid-Mesozoic ground invasion". Current Biology. 35 (10): 2337–2353.e5. Bibcode:2025CBio...35.2337S. doi:10.1016/j.cub.2025.04.017. PMID 40315849.
  476. ^ Mazin, J.-M.; Pouech, J. (2025). "Diversity of the pterodactyloid ichnites of Crayssac (Lower Tithonian, Late Jurassic, southwestern France)". Geobios. 91: 61–79. Bibcode:2025Geobi..91...61M. doi:10.1016/j.geobios.2024.12.002.
  477. ^ de Araújo, E.V.; Cubo, Jorge; Sena, M.V.A.; Bantim, R.A.M.; Weinschütz, L.C.; Kellner, A.W.A.; Sayão, J.M. (2025). "Wing bone laminarity in pterosaurs: insights into torsional adaptations for flight evolution". Anais da Academia Brasileira de Ciências. 97 (suppl. 1) e20240540. doi:10.1590/0001-3765202520240540. PMID 40053014.
  478. ^ Hone, D.; Lauer, R.; Lauer, B. (2025). "Soft tissue anatomy of pterosaur hands and feet – new information from Solnhofen region pterodactyloid specimens". Lethaia. 58 (3): 1–12. Bibcode:2025Letha..58..3.1H. doi:10.18261/let.58.3.1.
  479. ^ Averianov, A. O.; Lopatin, A. V. (2025). "Pterosaur Humerus from the Jurassic Deposits of Volga Region". Doklady Earth Sciences. 520 (1). 9. Bibcode:2025DokES.520....9A. doi:10.1134/S1028334X24603973.
  480. ^ Smith, R. E.; Martill, D. M. (2025). "A ctenochasmatid pterosaur from the Portland Limestone Formation (Late Jurassic, Tithonian) of southern England". Proceedings of the Geologists' Association. 136 (4) 101100. Bibcode:2025PrGA..13601100S. doi:10.1016/j.pgeola.2025.101100.
  481. ^ Bennett, S. C. (2025). "A review of the pterosaur Gnathosaurus subulatus from the Tithonian Solnhofen Lithographic Limestones of Germany: taxonomy and ontogeny". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 314 (1): 93–114. Bibcode:2025NJGPA.314...93B. doi:10.1127/njgpa/2025/1245.
  482. ^ Zhou, C.-F.; Fan, F. (2025). "Tooth replacement of the filter-feeding pterosaur Forfexopterus and its implications for ecological adaptation". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1). e20240673. doi:10.1590/0001-3765202520240673. PMID 39879506.
  483. ^ Ezcurra, M. D.; Fernandes, A. E.; Roig, M.; von Baczko, M. B. (2025). "A revision of the pterodactyloid pterosaur Herbstosaurus pigmaeus Casamiquela, 1975 from the Late Jurassic of Argentina". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1). e20241130. doi:10.1590/0001-3765202520241130. PMID 40008776.
  484. ^ Song, J.; Zhong, Y.; Jiang, S.; Wang, X. (2025). "The first ornithocheiromorph humerus from Wuerho (Urho), China, with a new isotopic age of the Tugulu Group". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1). e20240557. doi:10.1590/0001-3765202520240557. PMID 39879505.
  485. ^ Xu, Y.; Jiang, S.; Wang, X. (2025). "New insights on the osteology of istiodactyliforms from the Jehol Biota: new material of Hongshanopterus lacustris Wang et al., 2008 and restudy of Nurhachius ignaciobritoi Wang et al., 2005". Journal of Vertebrate Paleontology. 44 (6). e2496197. doi:10.1080/02724634.2025.2496197.
  486. ^ Pêgas, R.V. (2025). "On the systematics and phylogenetic nomenclature of the Ornithocheiriformes (Pterosauria, Pteranodontoidea)". Palaeontologia Electronica. 28 (2). a25. doi:10.26879/20.
  487. ^ Fialho, F. S. F.; Santucci, R. M.; Gomes, M. S.; Do Carmo, D. A. (2025). "First report of pterosaur remains from the Lower Cretaceous Quiricó Formation, São Francisco Basin (Minas Gerais), Brazil". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1) e20241140. doi:10.1590/0001-3765202520241140. PMID 40990782.
  488. ^ Chen, H.; Li, Z.; Jiang, S.; Wu, Q.; Gong, Y.; Zhu, X.; Wang, X. (2023). "A preliminary analysis of dental microstructure in Hamipterus (Pterosauria, Pterodactyloidea)". The Anatomical Record. 308 (10): 2642–2656. doi:10.1002/ar.25289. PMID 37477189. S2CID 259993331.
  489. ^ Alessio Ciaffi; Flavio Bellardini (2023). "Tooth histology of pterosaurs from the Lohan Cura Formation (Lower Cretaceous) of Southern Neuquén Basin (Patagonia, Argentina): paleobiological implications of the von Ebner lines". In Borja Holgado; Lucas Silveira Antonietto; Taissa Rodrigues (eds.). Crato Ptero 2023. p. 12. ISBN 978-65-00-72423-3.
  490. ^ Aureliano, T.; Rocha, M. P. S.; Lima-Filho, F. P.; Ghilardi, A. M. (2025). "Histology and fossil diagenesis of a pterosaur tooth from the Crato Formation (Lower Cretaceous of Brazil)". The Anatomical Record ar.70093. doi:10.1002/ar.70093. PMID 41216878.
  491. ^ Pêgas, R. V.; Nascimento, A. S.; Piazentin, L. C.; Pinheiro, F. L.; Zaher, H.; Costa, F. R. (2025). "Untangling the identity of Romualdo pterosaurs: 'Cearadactylus atrox' as a junior synonym of Brasileodactylus araripensis (Pterosauria, Anhangueridae)". Historical Biology: An International Journal of Paleobiology: 1–11. doi:10.1080/08912963.2025.2582068.
  492. ^ Piazentin, L. C.; Navarro, B. A.; Pêgas, R. V.; Carvalho, A. B.; Zaher, H. (2025). "A new pterosaur mandible from the Lower Cretaceous of Brazil, and its implications on the taxonomy of the genus Anhanguera (Pterosauria, Anhangueridae)". Journal of South American Earth Sciences. 165 105684. Bibcode:2025JSAES.16505684P. doi:10.1016/j.jsames.2025.105684.
  493. ^ Jiang, S.; Zhang, X.; Wu, Y.; Zheng, M.; Kellner, A.W.A.; Wang, X. (2025). "First occurrence of phytoliths in pterosaurs—evidence for herbivory". Science Bulletin. 70 (19): 3134–3138. Bibcode:2025SciBu..70.3134J. doi:10.1016/j.scib.2025.06.040. PMID 40683846.
  494. ^ Lu, X.; Teng, F.; Chen, Y.; Cheng, X.; Li, X.; Reisz, R. R. (2025). "Micro-XRF chemical elementary analysis on the holotype of Sinopterus atavismus Lü, Teng, Sun, Shen, Li, Gao, Liu, 2016 (Pterodactyloidea, Tapejaridae)". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1) e20250436. doi:10.1590/0001-3765202520250436. PMID 41259479.
  495. ^ Canejo, L.; Sayão, J. M.; Kellner, A. W. A. (2025). "Exploring the complex cranial morphology of Tupandactylus imperator (Pterodactyloidea, Tapejaridae) based on a new specimen". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1) e20250756. doi:10.1590/0001-3765202520250756. PMID 41259445.
  496. ^ Thomas, H. N.; McDavid, S. N. (2025). "Enter the dragons: the phylogeny of Azhdarchoidea (Pterosauria: Pterodactyloidea) and the evolution of giant size in pterosaurs". Journal of Systematic Palaeontology. 23 (1) 2569368. Bibcode:2025JSPal..2369368T. doi:10.1080/14772019.2025.2569368.
  497. ^ Alhalabi, W. A.; Pinheiro, F. L.; Jaoude, I. B.; Ismail, M. J.; Pereda Suberbiola, X.; Bardet, N.; Langer, M. C. (2025). "Recovering lost time in Syria: a gigantic latest Cretaceous azhdarchid pterosaur from the Palmyrides mountain chain". The Science of Nature. 112 (6) 78. Bibcode:2025SciNa.112...78A. doi:10.1007/s00114-025-02032-9. PMID 41099807.
  498. ^ Ortiz-David, L. D.; González-Riga, B. J.; Casal, G.; Tomaselli, M. B.; Figueredo-Vieyra, I. (2025). "Taphonomic analysis of Thanatosdrakon amaru (Pterodactyloidea: Azhdarchoidea) and paleoenvironmental reconstruction of the Plottier Formation (Upper Cretaceous, Neuquén Basin), Mendoza, Argentina". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1) e20250487. doi:10.1590/0001-3765202520250487. PMID 41337524.
  499. ^ Lacerda, M. B. S.; Fernandes, M. A.; Leonardi, G. (2025). "First pterosaur tracks from Brazil". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1) e20241490. doi:10.1590/0001-3765202520241490. PMID 40960737.
  500. ^ Pascual-Arribas, C.; Jung, J.; Masrour, M.; Hernández-Medrano, N.; Pérez-Lorente, F. (2025). "Pterosaur tracks in the Lower Cretaceous Enciso Group of the Cameros Basin (Spain)". Revista de la Sociedad Geológica de España (in Spanish). 38 (1): 3–24. Bibcode:2025RvSGE..38....3P. doi:10.55407/rsge.113204.
  501. ^ Antonietto, L. S.; Hamid, I.; Holgado, B.; Rocha, A. L.; Ferreira, M. A.; Saraiva, A. Á. F.; Lacerda, L. D.; Silva, R. C. (2025). "Reconstructing paleotrophic relationships on the Brazilian Romualdo Formation (Lower Cretaceous) through mercury analysis in fossils". Frontiers in Earth Science. 13 1551085. Bibcode:2025FrEaS..1351085A. doi:10.3389/feart.2025.1551085.
  502. ^ Pinheiro, F. L.; Kellner, A. W. A.; Silva, J. L.; Duque, R. R. C.; Sayão, J. M.; Araújo, E. V.; Costa, F. R.; Buchmann, R.; Cerqueira, G. M.; Canejo, L.; Beccari, V.; Bantim, R. A. M.; Holgado, B.; Pêgas, R. V. (2025). "Cretaceous Pterosaurs of the Araripe Basin: A Comprehensive Taxonomic Update and Paleobiological Insights". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1) e20250622. doi:10.1590/0001-3765202520250622. PMID 41259444.
  503. ^ Rivera-Sylva, H. E.; Hone, D. W. E.; Aguillón-Martínez, M. C.; Guzmán-Gutiérrez, J. R.; Morales-Flores, D.; Sánchez-Uribe, I. E.; Flores-Ventura, J.; Vivas-González, R. (2025). "Pterosaurs (Pterosauria) from the Cerro del Pueblo Formation (Late Campanian) of Coahuila, Mexico". Palæovertebrata. 48 (2) e1. doi:10.18563/pv.48.2.e1 (inactive 6 December 2025).{{cite journal}}: CS1 maint: DOI inactive as of December 2025 (link)
  504. ^ Milàn, S. N.; Jakobsen, S. L.; Lindow, B. E. K. (2025). "A diminutive pterosaur from the uppermost Maastrichtian chalk of Denmark". Acta Palaeontologica Polonica. 70 (4): 723–730. doi:10.4202/app.01252.2025.
  505. ^ Costa, F. R.; Mailho, M. X.; Francisco, E. O.; Nunes, I. (2025). "Gaining Ground On Pterosaur Biomechanics: A General Overview". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1) e20250490. doi:10.1590/0001-3765202520250490. PMID 41379194.
  506. ^ Ceroula, D. F.; Pêgas, R. V.; Nascimento, A. S.; Nogueira, A.; Costa, F. R. (2025). "Athletic capability index in pterosaurs: an initial assessment". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1) e20250489. doi:10.1590/0001-3765202520250489. PMID 41417322.
  507. ^ Sen, Sulagna; Ray, Sanghamitra (2025). "Taxonomic reassessment of archosaurs with dinosaurian affinities from the lower fauna of the Upper Triassic Maleri Formation of India and their significance". Journal of Vertebrate Paleontology. 45 (3) e2546434. Bibcode:2025JVPal..4546434S. doi:10.1080/02724634.2025.2546434.
  508. ^ Temp Müller, Rodrigo (January 2025). "A new "silesaurid" from the oldest dinosauromorph-bearing beds of South America provides insights into the early evolution of bird-line archosaurs". Gondwana Research. 137: 13–28. Bibcode:2025GondR.137...13M. doi:10.1016/j.gr.2024.09.007.
  509. ^ Paes Neto, V. D.; Pretto, F. A.; Martinelli, A. G.; Battista, F.; Garcia, M.; Müller, R. T.; Schmitt, M. R.; Melo, T. P.; Francischini, H.; Schultz, C. L.; Pinheiro, F.; Soares, M. B.; Kellner, A. W. (2025). "Continuous presence of dinosauromorphs in South America throughout the Middle to the Late Triassic". Scientific Reports. 15 (1) 18498. Bibcode:2025NatSR..1518498P. doi:10.1038/s41598-025-99362-5. PMC 12125330. PMID 40447694.
  510. ^ Garcia, M. S.; Müller, R. T. (2025). "Triassic pterosaur precursors of Brazil: catalog, evolutionary context, and a new hypothesis for phylogenetic relationships of Pterosauromorpha". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1). e20240844. doi:10.1590/0001-3765202520240844. PMID 40008775.
  511. ^ Aureliano, T.; Müller, R. T.; Holgado, B.; Kerber, L.; Ghilardi, A. M. (2025). "The origin and evolution of air sacs in pterosaurs and their forerunners". Journal of Anatomy. 248 (1) joa.70030. doi:10.1111/joa.70030. PMC 12682599. PMID 40771015.
  512. ^ Tolchard, F. B.; Perkins, B. W.; Nesbitt, S. J. (2025). "Silesaurid (Archosauria: Dinosauriformes) remains from the base of the Dockum Group (Late Triassic: Otischalkian) of Texas provide new insights to the North American record of dinosauriforms". The Anatomical Record. 309 (2) ar.25677. doi:10.1002/ar.25677. PMID 40331348.
  513. ^ Marsh, A. D. (2025). "A large silesaurid specimen from Petrified Forest National Park, U.S.A., with comments on large body sizes in latest Triassic ornithodirans". Lithodendron. 2: 1–15. doi:10.69575/RPKH2343.
  514. ^ Lovegrove, J.; Chapelle, K. E. J.; Peecook, B. R.; Upchurch, P.; Barrett, P. M. (2025). "A new large 'silesaur' specimen from the ?Late Triassic of Zambia; taxonomic, ecological and evolutionary implications". Royal Society Open Science. 12 (7) 250762. Bibcode:2025RSOS...1250762L. doi:10.1098/rsos.250762. PMC 12303107. PMID 40727407.
  515. ^ Breeden, B. T.; Irmis, R. B.; Nesbitt, S. J.; Smith, N. D.; Turner, A. H. (2025). "New specimens of Eucoelophysis baldwini from the Upper Triassic Chinle Formation, northern New Mexico, U.S.A., and their implications for the evolution of Silesauridae (Dinosauriformes)". Journal of Vertebrate Paleontology. 45 (3) e2552170. Bibcode:2025JVPal..4552170B. doi:10.1080/02724634.2025.2552170.
  516. ^ Burton, M. G.; Benito, J.; Mellor, K.; Smith, E.; Martin-Silverstone, E.; O'Connor, P.; Field, D. J. (2025). "The influence of soft tissue volume on estimates of skeletal pneumaticity: implications for fossil archosaurs". Philosophical Transactions of the Royal Society B: Biological Sciences. 380 (1920). 20230428. doi:10.1098/rstb.2023.0428. PMC 11864828. PMID 40010389.
  517. ^ Byrne, P. J.; Smith, N. D.; Schachner, E. R.; Bottjer, D. J.; Huttenlocker, A. K. (2025). "Evidence for the loss of pneumatization and pneumosteal tissues in secondarily aquatic archosaurs". Integrative Organismal Biology obaf039. doi:10.1093/iob/obaf039. PMID 41383558.
  518. ^ Byrne, P. J.; Legendre, L. J.; Echols, S.; Farmer, C. G.; Wu, Y.-H.; Huttenlocker, A. K. (2025). "Diverging trends in erythrocyte size elucidate cardiovascular evolution in stem dinosaurs and crocodilians". Proceedings of the Royal Society B: Biological Sciences. 292 (2054). 20251286. doi:10.1098/rspb.2025.1286. PMC 12419883. PMID 40925567.
  519. ^ Chinsamy, A.; Pereyra, M.-E. (2025). "Stochastic growth marks in Crocodylus niloticus". Scientific Reports. 16 1811. doi:10.1038/s41598-025-31384-5. PMID 41413165.
  520. ^ Xu, X.; Barrett, P. M. (2025). "The origin and early evolution of feathers: implications, uncertainties and future prospects". Biology Letters. 21 (2). 20240517. doi:10.1098/rsbl.2024.0517. PMC 11837858. PMID 39969251.
  521. ^ Doering, M.; Garcia, M. S.; Schiefelbein, J. S.; Kerber, L.; Müller, R. T. (2025). "New tetrapod remains help constrain the age of a peculiar assemblage, including early dinosaurs and pterosaur precursors, from the Upper Triassic of southern Brazil". Journal of Vertebrate Paleontology. 45 (3) e2552552. Bibcode:2025JVPal..4552552D. doi:10.1080/02724634.2025.2552552.
  522. ^ Foffa, D.; Dunne, E. M.; Chiarenza, A. A.; Wynd, B. M.; Farnsworth, A.; Lunt, D. J.; Valdes, P. J.; Nesbitt, S. J.; Kligman, B. T.; Marsh, A. D.; Parker, W. G.; Butler, R. J.; Fraser, N. C.; Brusatte, S. L.; Barrett, P. M. (2025). "Climate drivers and palaeobiogeography of lagerpetids and early pterosaurs". Nature Ecology & Evolution. 9 (8): 1359–1372. Bibcode:2025NatEE...9.1359F. doi:10.1038/s41559-025-02767-8. PMC 12328205. PMID 40533513.
  523. ^ Bronzati, M.; Watanabe, A.; Benson, R. B. J.; Müller, R. T.; Witmer, L. M.; Ezcurra, M. D.; Montefeltro, F. C.; von Baczko, M. B.; Bhullar, B.-A. S.; Desojo, J. B.; Knoll, F.; Langer, M. C.; Lautenschlager, S.; Stocker, M. R.; Turner, A. H.; Werneburg, I.; Nesbitt, S. J.; Fabbri, M. (2025). "Neuroanatomical convergence between pterosaurs and non-avian paravians in the evolution of flight". Current Biology. 35 (24): 6191–6198.e4. Bibcode:2025CBio...35.6191B. doi:10.1016/j.cub.2025.10.086. PMID 41308650.
  524. ^ Sena, M. V. A.; Voeten, D. F. A. E.; Araújo, E.; Cubo, J. (2025). "Femoral metadiaphyseal and nutrient foramen perfusion suggests comparable maximal metabolic rates in a pterosaur and in a semi-aquatic maniraptoran dinosaur". PeerJ. 13 e19806. doi:10.7717/peerj.19806. PMC 12369628. PMID 40852376.
  525. ^ Wang, J.; Qiu, R.; Chen, Q.; Liu, D.; Zhang, T.; Li, Y.; Zhang, X.; Wang, B.; Hu, D.; Ren, D.; Wang, X.; Xia, X.; Zhang, Y.; Zhang, W.; Bai, M. (2025). "The ultrastructure of the Cretaceous feathers highlights the evolution of the feather". Science Bulletin. 70 (15): 2431–2435. Bibcode:2025SciBu..70.2431W. doi:10.1016/j.scib.2025.04.073. PMID 40441972.
  526. ^ Zhang, Y.-Y.; Tang, J.-W.; Wang, Y.; Wang, S. (2025). "Medulla-free barb rami highlight the morphological diversity of early feathers". Zoological Research. 46 (4): 773–787. doi:10.24272/j.issn.2095-8137.2024.435. PMC 12464373. PMID 40567165.
  527. ^ Hedge, J.; Tucker, R. T.; Makovicky, P. J.; Zanno, L. E. (2025). "Fossil eggshell diversity of the Mussentuchit Member, Cedar Mountain Formation, Utah". PLOS ONE. 20 (2). e0314689. Bibcode:2025PLoSO..2014689H. doi:10.1371/journal.pone.0314689. PMC 11864547. PMID 40009577.
  528. ^ Brown, C. M.; Bell, P. R.; Owers, H.; Pickles, B. J. (2025). "A juvenile pterosaur vertebra with putative crocodilian bite from the Campanian of Alberta, Canada" (PDF). Journal of Paleontology. 98 (5): 855–864. doi:10.1017/jpa.2024.12.
  529. ^ Cardia, F. M. S.; Bernardi, J. V. E.; Oliveira, C. E. M.; Andrade, M. B.; Langer, M. C.; Tavares, S. A. S.; Iori, F. V.; Nava, W. R.; Marinho, T. S.; Ribeiro, L. C. B.; Souza, J. R.; Santucci, R. M. (2025). "Mercury concentration: A new window into ancient diets and trophic levels in vertebrate paleontology". Chemical Geology. 702 123218. doi:10.1016/j.chemgeo.2025.123218.
  530. ^ Hunt, A. P.; Lucas, S. G. (2025). "The ichnotaxonomy of regurgitalites with description of new ichnogenera". New Mexico Museum of Natural History and Science Bulletin. 101: 153–162.
  531. ^ Link, A.; Moreno-Bernal, J. W.; Degrange, F. J.; Cooke, S. B.; Ortiz-Pabon, L. G.; Perdomo-Rojas, C. A.; Salas-Gismondi, R. (2025). "Direct evidence of trophic interaction between a crocodyliform and a large terror bird in the Middle Miocene of La Venta, Colombia". Biology Letters. 21 (7) 20250113. doi:10.1098/rsbl.2025.0113. PMC 12308325. PMID 40695337.
  532. ^ Cornille, A.; Beguesse, K.; Wolff, E.; Zinner, C.; Asbach, P.; Clarac, F.; Witzmann, F. (2025). "Skeletal pathologies in extant crocodilians as a window into the paleopathology of fossil archosaurs". The Anatomical Record ar.70079. doi:10.1002/ar.70079. PMID 41239832.