Isoschizomer
Isoschizomers are pairs of restriction enzymes specific to the same recognition sequence.[1] The term is derived from Greek iso 'same' and skihzo 'to split'.[2][3]
The first enzyme discovered which recognizes a given sequence is known as the prototype; all subsequently identified enzymes that recognize that sequence are isoschizomers.[4] For example, the prototype SphI (CGTAC/G) has the isoschizomers BbuI (CGTAC/G) and PaeI.[5]
In some cases, only one out of a pair of isoschizomers can recognize both the methylated and unmethylated forms of restriction sites, whereas the other enzyme recognizes only the unmethylated form.[6] This property of isoschizomers allows for the identification of methylation states. For example, the isoschizomers HpaII and MspI both recognize the sequence 5'-CCGG-3' when it is unmethylated.[7] However, when the second C of the sequence is methylated, only MspI can recognize it.
An enzyme that recognizes the same sequence but cuts it in a different position is a neoschizomer.[1][4] Neoschizomers are a subset of isoschizomers. For example, SmaI (CCC/GGG) and XmaI (C/CCGGG) are neoschizomers of each other. Similarly KpnI (GGTAC/C) and Acc65I (G/GTACC) are neoschizomers of each other. An enzyme that recognizes a slightly different sequence, but produces the same ends is an isocaudomer.[8]
References
- ^ a b Gowers, Darren M.; Halford, Stephen E. (2004). "DNA Restriction and Modification: Type II Enzymes". In Lennarz, William J.; Lane, M. Daniel (eds.). Encyclopedia of Biological Chemistry. Amsterdam, The Netherlands: Elsevier. p. 772. ISBN 978-0-08-054775-6.
- ^ Pingoud, Alfred; Wilson, Geoffrey G.; Wende, Wolfgang (July 2014). "Type II restriction endonucleases--a historical perspective and more". Nucleic Acids Research. 42 (12): 7489–7527. doi:10.1093/nar/gku447. ISSN 1362-4962. PMC 5027491. PMID 24878924.
- ^ Berger, Shelby L. (October 1994). "Expanding the Potential of Restriction Endonucleases: Use of Hapaxoterministic Enzymes". Analytical Biochemistry. 222 (1): 1–8. doi:10.1006/abio.1994.1445.
- ^ a b Roberts, Richard J.; Belfort, Marlene; Bestor, Timothy; Bhagwat, Ashok S.; Bickle, Thomas A.; Bitinaite, Jurate; Blumenthal, Robert M.; Degtyarev, Sergey Kh; Dryden, David T. F.; Dybvig, Kevin; Firman, Keith; Gromova, Elizaveta S.; Gumport, Richard I.; Halford, Stephen E.; Hattman, Stanley; Heitman, Joseph; Hornby, David P.; Janulaitis, Arvydas; Jeltsch, Albert; Josephsen, Jytte; Kiss, Antal; Klaenhammer, Todd R.; Kobayashi, Ichizo; Kong, Huimin; Krüger, Detlev H.; Lacks, Sanford; Marinus, Martin G.; Miyahara, Michiko; Morgan, Richard D.; Murray, Noreen E.; Nagaraja, Valakunja; Piekarowicz, Andrzej; Pingoud, Alfred; Raleigh, Elisabeth; Rao, Desirazu N.; Reich, Norbert; Repin, Vladimir E.; Selker, Eric U.; Shaw, Pang-Chui; Stein, Daniel C.; Stoddard, Barry L.; Szybalski, Waclaw; Trautner, Thomas A.; Van Etten, James L.; Vitor, Jorge M. B.; Wilson, Geoffrey G.; Xu, Shuang-yong (1 April 2003). "A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes". Nucleic Acids Research. 31 (7): 1805–1812. doi:10.1093/nar/gkg274. ISSN 1362-4962. PMID 12654995.
- ^ Roberts, Richard J.; Macelis, Dana (11 May 1992). "Restriction enzymes and their isoschizomers". Nucleic Acids Research. 20 (suppl): 2167–2180. doi:10.1093/nar/20.suppl.2167. PMC 333991.
- ^ Nelson, M.; McClelland, M. (1 January 1987). "The effect of site-specific methylation on restriction-modification enzymes". Nucleic Acids Research. 15. doi:10.1093/nar/15.suppl.r219. PMC 339887. PMID 3033612.
- ^ Harrison, Alan; Parle-McDermott, Anne (2011). "DNA Methylation: A Timeline of Methods and Applications". Frontiers in Genetics. 2. doi:10.3389/fgene.2011.00074.
- ^ Glick, Bernard R.; Patten, Cheryl L. (2022). Molecular biotechnology: principles and applications of recombinant DNA (Sixth ed.). Hoboken, NJ: Wiley-ASM Press. p. 15. ISBN 9781683673668.