Silicon Quantum Computing Pty Ltd (SQC) is a quantum computing company based in Sydney, Australia. The company develops quantum computers using precision engineered atom qubits in pure silicon based on research conducted at the Australian Research Council (ARC)[1] established in 2000. SQC is a full stack technology company building both hardware and software. In February 2025 SQC demonstrated the highest fidelity operation of Grover’s algorithm[2] without the need for error correction.

Silicon Quantum Computing was founded in May 2017, by 2018 Australian of the Year [3], and is supported by the Commonwealth Bank, Telstra, the Commonwealth Government, the Government of NSW and the University of New South Wales.[4]

The company exploits leading-edge manufacturing technology, developed by Simmons. In 2012 Simmons demonstrated a single atom transistor,[5] the world’s smallest transistor[10] based on the ability to precision place a single phosphorus atom in silicon with atomic precision.[6] Then in 2022 SQC announced the the world’s first integrated circuit manufactured with atomic precision[7] and used this to simulate the Su-Schrieffer-Heeger model.[8] Working at this scale allows SQC to place millions of qubits on one chip.

SQC ‘s material-first approach focusses on qubit quality as the path to scalable quantum computing. SQC demonstrated the world’s highest fidelity implementation of Grover’s algorithm in February 2025 across any quantum platform.[2] This result leverages SQC’s ability to perform fast (nanosecond) exchange gates,[9] high fidelity (99.95%) single shot read-out[10] and high fidelity initialisation[11] within a fully crystalline, low noise platform.[12]

SQC has emerged from over 25+ years of research and development at the Centre of Excellence. It has built 1200m2 globally unique atomic-scale manufacturing and testing facilities[13] allowing new chip designs to be deployed within a 1 to 2-week timeframe.[14]

History

Silicon Quantum Computing was founded in May 2017 by Michelle Y. Simmons.[15]

Technical achievements prior to the formation of the company, yet which foreshadowed the technology now controlled by SQC, include a single atom transistor, the world’s smallest transistor[5] (2012), the world’s narrowest interconnects[16] (2012), and spectroscopy of few electrons single crystal silicon quantum dots[17] (2010).

Technical achievements following the formation of the company include spin-readout in atomic qubits in 2019[18], a two qubit gate between phosphorus donor electrons in silicon in 2019,[9] and in 2022 the world’s first integrated circuit manufactured with atomic precision.[8]

In August 2023, SQC was awarded a contract with the NSW government to design bespoke quantum hardware solutions that could be used to solve optimisation problems on Sydney’s complex public transport network.[19]

In February 2024, SQC announced the appointment of Simon Segars, the former-CEO of Arm Holdings, as its new Chair.[20]

At SxSW in 2024, Michelle Simmons noted that the Commonwealth Bank and Telstra are using SQC’s quantum machine learning processor for fraud detection and network anomaly detection, respectively.[21]

In February 2025, SQC demonstrated the world’s highest fidelity performance implementation of Grover’s algorithm.[22]

Technology and Products

Silicon Quantum Computing is the only company worldwide that can manufacture quantum processors with atomic precision. This capability, pioneered since 1999, is necessary to realise scalable atom-based processors, originally proposed[23] by Bruce Kane in 1998. Atom qubits combine the high quality, long coherence times of nuclear spin qubits[17] with the low noise environment of silicon.[12] Prior to the formation of SQC, this work was supported by the Australian Research Council’s Centre of Excellence program and the US Army.

SQC is developing all layers of the quantum stack to enabling faster development cycles, integrated and reliable compute access to SQC processors via cloud and direct private point-to-point connections.

Atom qubits are natural qubits that form when phosphorus atoms are placed within a silicon crystal. SQC uses the spins of both phosphorus nuclei and phosphorus electrons in its qubits. Atomic scale manufacturing allows for a minimum of componentry to be placed near qubits. This approach, alongside the spin vacuum naturally afforded by the silicon crystal, minimises noise and crosstalk which are the greatest barriers to reliable quantum computation.

Many competitor businesses pursue “top down” processes, who take already-scaled technologies looking to combine them to make a quantum computer. SQC’s approach is an example of “bottom up” quantum computation. SQC has started with naturally quantum components and processes.

References

  1. ^ Centre of Excellence for Quantum Computation and Communication Technology
  2. ^ a b Thorvaldson, I.; Poulos, D.; Moehle, C. M.; Misha, S. H.; Edlbauer, H.; Reiner, J.; Geng, H.; Voisin, B.; Jones, M. T.; Donnelly, M. B.; Peña, L. F.; Hill, C. D.; Myers, C. R.; Keizer, J. G.; Chung, Y. (2025-02-20). "Grover's algorithm in a four-qubit silicon processor above the fault-tolerant threshold". Nature Nanotechnology: 1–6. doi:10.1038/s41565-024-01853-5. ISSN 1748-3395. PMID 39979400.
  3. ^ Michelle Y. Simmons
  4. ^ [1]
  5. ^ a b Fuechsle, Martin; Miwa, Jill A.; Mahapatra, Suddhasatta; Ryu, Hoon; Lee, Sunhee; Warschkow, Oliver; Hollenberg, Lloyd C. L.; Klimeck, Gerhard; Simmons, Michelle Y. (2012). "A single-atom transistor". Nature Nanotechnology. 7 (4): 242–246. Bibcode:2012NatNa...7..242F. doi:10.1038/nnano.2012.21. ISSN 1748-3395. PMID 22343383.
  6. ^ Schofield, S. R.; Curson, N. J.; Simmons, M. Y.; Rueß, F. J.; Hallam, T.; Oberbeck, L.; Clark, R. G. (2003-09-25). "Atomically Precise Placement of Single Dopants in Si". Physical Review Letters. 91 (13): 136104. arXiv:cond-mat/0307599. Bibcode:2003PhRvL..91m6104S. doi:10.1103/PhysRevLett.91.136104. PMID 14525322.
  7. ^ [2]
  8. ^ a b Kiczynski, M.; Gorman, S. K.; Geng, H.; Donnelly, M. B.; Chung, Y.; He, Y.; Keizer, J. G.; Simmons, M. Y. (2022). "Engineering topological states in atom-based semiconductor quantum dots". Nature. 606 (7915): 694–699. Bibcode:2022Natur.606..694K. doi:10.1038/s41586-022-04706-0. ISSN 1476-4687. PMC 9217742. PMID 35732762.
  9. ^ a b He, Y.; Gorman, S. K.; Keith, D.; Kranz, L.; Keizer, J. G.; Simmons, M. Y. (2019). "A two-qubit gate between phosphorus donor electrons in silicon". Nature. 571 (7765): 371–375. Bibcode:2019Natur.571..371H. doi:10.1038/s41586-019-1381-2. hdl:1959.4/unsworks_63385. ISSN 1476-4687. PMID 31316197.
  10. ^ Keith, Daniel; Chung, Yousun; Kranz, Ludwik; Thorgrimsson, Brandur; Gorman, Samuel K.; Simmons, Michelle Y. (2022-09-09). "Ramped measurement technique for robust high-fidelity spin qubit readout". Science Advances. 8 (36): eabq0455. Bibcode:2022SciA....8..455K. doi:10.1126/sciadv.abq0455. ISSN 2375-2548. PMC 9451149. PMID 36070386.
  11. ^ Reiner, J.; Chung, Y.; Misha, S. H.; Lehner, C.; Moehle, C.; Poulos, D.; Monir, S.; Charde, K. J.; Macha, P.; Kranz, L.; Thorvaldson, I.; Thorgrimsson, B.; Keith, D.; Hsueh, Y. L.; Rahman, R. (2024). "High-fidelity initialization and control of electron and nuclear spins in a four-qubit register". Nature Nanotechnology. 19 (5): 605–611. Bibcode:2024NatNa..19..605R. doi:10.1038/s41565-023-01596-9. ISSN 1748-3387. PMC 11106007. PMID 38326467.
  12. ^ a b Kranz, Ludwik; Gorman, Samuel Keith; Thorgrimsson, Brandur; He, Yu; Keith, Daniel; Keizer, Joris Gerhard; Simmons, Michelle Yvonne (2020). "Quantum Computing: Exploiting a Single-Crystal Environment to Minimize the Charge Noise on Qubits in Silicon (Adv. Mater. 40/2020)". Advanced Materials. 32 (40). Bibcode:2020AdM....3270298K. doi:10.1002/adma.202070298. ISSN 0935-9648.
  13. ^ [3]
  14. ^ [4]
  15. ^ [5]
  16. ^ Weber, B.; Mahapatra, S.; Ryu, H.; Lee, S.; Fuhrer, A.; Reusch, T. C. G.; Thompson, D. L.; Lee, W. C. T.; Klimeck, G.; Hollenberg, L. C. L.; Simmons, M. Y. (2012-01-06). "Ohm's Law Survives to the Atomic Scale". Science. 335 (6064): 64–67. Bibcode:2012Sci...335...64W. doi:10.1126/science.1214319. PMID 22223802.
  17. ^ a b Fuechsle, Martin; Mahapatra, S.; Zwanenburg, F. A.; Friesen, Mark; Eriksson, M. A.; Simmons, Michelle Y. (2010). "Spectroscopy of few-electron single-crystal silicon quantum dots". Nature Nanotechnology. 5 (7): 502–505. Bibcode:2010NatNa...5..502F. doi:10.1038/nnano.2010.95. ISSN 1748-3395. PMID 20495552.
  18. ^ Koch, Matthias; Keizer, Joris G.; Pakkiam, Prasanna; Keith, Daniel; House, Matthew G.; Peretz, Eldad; Simmons, Michelle Y. (2019). "Spin read-out in atomic qubits in an all-epitaxial three-dimensional transistor". Nature Nanotechnology. 14 (2): 137–140. Bibcode:2019NatNa..14..137K. doi:10.1038/s41565-018-0338-1. ISSN 1748-3395. PMID 30617309.
  19. ^ [6]
  20. ^ [7]
  21. ^ [8]
  22. ^ [9]
  23. ^ Kane, B. E. (1998). "A silicon-based nuclear spin quantum computer". Nature. 393 (6681): 133–137. Bibcode:1998Natur.393..133K. doi:10.1038/30156. ISSN 0028-0836.
No tags for this post.