Dr. Martin Burke is the May and Ving Lee Professor for Chemical Innovation at the University of Illinois at Urbana-Champaign. He is the founding Director of the Molecular Maker Lab and a co-founder of the Molecule Maker Lab Institute.[3] He also helped launch the Carle Illinois College of Medicine and served as its inaugural Associate Dean of Research.
Burke discovered chemistry that machines can do. His lab specifically pioneered the modular synthesis of small molecules with MIDA/TIDA boronate building blocks, an approach that is friendly to automation, non-specialists, and AI. More than 300 of these building blocks are now commercially available, and they have been used by hundreds of other labs worldwide to help identify many different types of natural products, pharmaceuticals, herbicides, pesticides, fungicides, diagnostic probes, catalysts, anti-corrosive coatings, quantum dots, carbohydrate sensors, and a wide range of materials, collectively yielding >1000 publications including >300 patents. In his own lab, Burke leveraged this modular chemistry approach to develop the field of molecular prosthetics yielding new drug candidates for cystic fibrosis (now in clinical trials) and anemia, define the sterol sponge mechanism by which glycosylated polyene macrolide natural products kill eukaryotic cells which led to renal sparing antifungal candidates for treating invasive fungal infections (now in clinical trials), and to enable AI-guided closed-loop discovery of top-in-class organic lasers and mechanistic insights underlying the stability of organophotovoltaic materials. Burke is an elected member of the National Academy of Medicine and the American Society for Clinical Investigation, and a Fellow of the American Association for the Advancement of Science. Leveraging the broad potential of this modular approach, Burke (co)-founded multiple biotechnology companies, including REVOLUTION Medicines, Sfunga Therapeutics (now Elion Therapeutics), and cystetic Medicines, which have collectively advanced 7 drug candidates into clinical trials.
Early life and education
Burke was born on February 5, 1976, in Westminster, Maryland.[4] Burke studied chemistry as an undergraduate at Johns Hopkins University, graduating in 1998 with his B.A. in Chemistry. While an undergraduate, he was a Howard Hughes Medical Institute Undergraduate Research Fellow, and he conducted research with Professors Henry Brem and Gary H. Posner on derivatives of calcitriol as potential drug candidates.[5][6] Burke went on to Harvard University, where he earned a Ph.D. and M.D. in 2003 and 2005, respectively. Burke conducted his Ph.D. thesis work with Professor Stuart L. Schreiber on the diversity-oriented synthesis of small molecules with diverse skeletons.[7][8][9]
Independent career
He joined the Department of Chemistry in 2005 as an Assistant Professor, was promoted to Associate Professor in 2011, then to full Professor in 2014. He was appointed Associate Dean of Research of the Carle-Illinois College of Medicine in 2018.[4][10] In response to the COVID-19 Pandemic, Burke was appointed to lead the University of Illinois' SHIELD initiative to protect the community with testing. A collaborative effort between Burke and Paul J. Hergenrother led to the development of a saliva test called covidSHIELD for COVID-19 that has been used over 1 million times in the campus community.[11]
Research
The Burke Group discovered chemistry that machines can do.[12][13] The Burke lab specifically pioneered the modular synthesis of small molecules with MIDA/TIDA boronate building blocks,[14][15] an approach that is friendly to automation,[16][17][18][19] non-specialists,[20] and AI.[21][22][23][24] More than 300 of these building blocks are now commercially available, and they have been used by hundreds of other labs worldwide to help identify many different types of natural products, pharmaceuticals, herbicides, pesticides, fungicides, diagnostic probes, catalysts, anti-corrosive coatings, quantum dots, carbohydrate sensors, and a wide range of materials, collectively yielding >1000 publications including >300 patents. In his own lab, Burke leveraged this modular chemistry approach to develop the field of molecular prosthetics yielding new drug candidates for cystic fibrosis[25][26][27][28][29][30] (now in clinical trials) and anemia,[31][32][33] define the sterol sponge mechanism[34][35][36][37] by which glycosylated polyene macrolide natural products kill eukaryotic cells which led to a renal sparing antifungal candidate AM-2-19/SF001 for treating invasive fungal infections[38] (now in clinical trials), and to enable AI-guided closed-loop discovery of top-in-class organic lasers[39] and mechanistic insights underlying the stability of organophotovoltaic materials.[40] Leveraging the broad potential of this modular approach, Burke (co)-founded multiple biotechnology companies, including REVOLUTION Medicines, Sfunga Therapeutics (now Elion Therapeutics), and cystetic Medicines, which have collectively advanced 7 drug candidates into clinical trials.
Recognition
Burke was named a Beckman Foundation Young Investigator in 2008. The American Chemical Society awarded him in 2011 their Cope Scholar Award, in 2013 Elias J. Corey Award for Outstanding Original Contribution in Organic Synthesis by a Young Investigator, and in 2017 they named Burke their Nobel Laureate Signature Award in Graduate Education in Chemistry. More recently, Burke was elected to the National Academy of Medicine and American Society of Clinical Investigation. Among other honors, Burke is a fellow of the American Association for the Advancement of Science and has been recognized with the Hirata Gold Medal, Mukaiyama Award, and a Presidential Medal from the University of Illinois System.
References
- ^ "Martin D. Burke". Arnold and Mabel Beckman Foundation. Retrieved 9 March 2017.
- ^ "National Awards".
- ^ Burke, Martin D.; Denmark, Scott E.; Diao, Ying; Han, Jiawei; Switzky, Rachel; Zhao, Huimin (March 2024). "Molecule Maker Lab Institute: Accelerating, advancing, and democratizing molecular innovation". AI Magazine. 45 (1): 117–123. doi:10.1002/aaai.12154. ISSN 0738-4602.
- ^ a b "Curriculum vitae" (PDF). University of Illinois at Urbana–Champaign. Retrieved 2020-12-17.
- ^ Posner, Gary H.; Lee, Jae Kyoo; Wang, Qiang; Peleg, Sara; Burke, Martin; Brem, Henry; Dolan, Patrick; Kensler, Thomas W. (1998). "Noncalcemic, Antiproliferative, Transcriptionally Active, 24-Fluorinated Hybrid Analogues of the Hormone 1α,25-Dihydroxyvitamin D3. Synthesis and Preliminary Biological Evaluation". Journal of Medicinal Chemistry. 41 (16): 3008–3014. doi:10.1021/jm980031t. ISSN 0022-2623. PMID 9685240.
- ^ White, M.Christina; Burke, Martin D.; Peleg, Sara; Brem, Henry; Posner, Gary H. (2001-07-01). "Conformationally Restricted Hybrid Analogues of the Hormone 1α,25-Dihydroxyvitamin D3: Design, Synthesis, and Biological Evaluation". Bioorganic & Medicinal Chemistry. 9 (7): 1691–1699. doi:10.1016/S0968-0896(01)00087-6. ISSN 0968-0896. PMID 11425569.
- ^ Kirkpatrick, Peter (2003). "New directions in chemical space". Nature Reviews Drug Discovery. 2 (12): 948. doi:10.1038/nrd1266. ISSN 1474-1784.
- ^ Burke, Martin D.; Berger, Eric M.; Schreiber, Stuart L. (2003-10-24). "Generating Diverse Skeletons of Small Molecules Combinatorially". Science. 302 (5645): 613–618. Bibcode:2003Sci...302..613B. doi:10.1126/science.1089946. ISSN 0036-8075. PMID 14576427. S2CID 6168881.
- ^ Burke, Martin D.; Berger, Eric M.; Schreiber, Stuart L. (2004). "A Synthesis Strategy Yielding Skeletally Diverse Small Molecules Combinatorially". Journal of the American Chemical Society. 126 (43): 14095–14104. doi:10.1021/ja0457415. ISSN 0002-7863. PMID 15506774.
- ^ "University of Illinois Board of Trustees, Promotions recommended to be effective at the beginning of the 2014-15 academic year" (PDF).
- ^ "Martin Burke, Paul Hergenrother, COVID-19 saliva test in national spotlight". University of Illinois at Urbana–Champaign Department of Chemistry. Retrieved 2022-05-03.
- ^ Trobe, Melanie; Burke, Martin D. (2018-04-09). "The Molecular Industrial Revolution: Automated Synthesis of Small Molecules". Angewandte Chemie International Edition. 57 (16): 4192–4214. doi:10.1002/anie.201710482. ISSN 1433-7851. PMC 5912692. PMID 29513400.
- ^ Lehmann, Jonathan W.; Blair, Daniel J.; Burke, Martin D. (2018-02-07). "Towards the generalized iterative synthesis of small molecules". Nature Reviews Chemistry. 2 (2). doi:10.1038/s41570-018-0115. ISSN 2397-3358. PMC 5912323. PMID 29696152.
- ^ Blair, Daniel J.; Chitti, Sriyankari; Trobe, Melanie; Kostyra, David M.; Haley, Hannah M. S.; Hansen, Richard L.; Ballmer, Steve G.; Woods, Toby J.; Wang, Wesley; Mubayi, Vikram; Schmidt, Michael J.; Pipal, Robert W.; Morehouse, Greg. F.; Palazzolo Ray, Andrea M. E.; Gray, Danielle L. (2022-04-07). "Automated iterative Csp3–C bond formation". Nature. 604 (7904): 92–97. doi:10.1038/s41586-022-04491-w. ISSN 0028-0836. PMC 10500635. PMID 35134814.
- ^ Gillis, Eric P.; Burke, Martin D. (2007-05-01). "A Simple and Modular Strategy for Small Molecule Synthesis: Iterative Suzuki−Miyaura Coupling of B-Protected Haloboronic Acid Building Blocks". Journal of the American Chemical Society. 129 (21): 6716–6717. doi:10.1021/ja0716204. ISSN 0002-7863.
- ^ Wang, Wesley; Angello, Nicholas H.; Blair, Daniel J.; Tyrikos-Ergas, Theodore; Krueger, William H.; Medine, Kameron N. S.; LaPorte, Antonio J.; Berger, Joshua M.; Burke, Martin D. (2024-05-29). "Rapid automated iterative small-molecule synthesis". Nature Synthesis. 3 (8): 1031–1038. doi:10.1038/s44160-024-00558-w. ISSN 2731-0582.
- ^ Li, Songsong; Jira, Edward R.; Angello, Nicholas H.; Li, Jialing; Yu, Hao; Moore, Jeffrey S.; Diao, Ying; Burke, Martin D.; Schroeder, Charles M. (2022-04-19). "Using automated synthesis to understand the role of side chains on molecular charge transport". Nature Communications. 13 (1). doi:10.1038/s41467-022-29796-2. ISSN 2041-1723. PMC 9019014. PMID 35440635.
- ^ Blair, Daniel J.; Chitti, Sriyankari; Trobe, Melanie; Kostyra, David M.; Haley, Hannah M. S.; Hansen, Richard L.; Ballmer, Steve G.; Woods, Toby J.; Wang, Wesley; Mubayi, Vikram; Schmidt, Michael J.; Pipal, Robert W.; Morehouse, Greg. F.; Palazzolo Ray, Andrea M. E.; Gray, Danielle L. (2022-04-07). "Automated iterative Csp3–C bond formation". Nature. 604 (7904): 92–97. doi:10.1038/s41586-022-04491-w. ISSN 0028-0836. PMC 10500635. PMID 35134814.
- ^ Li, Junqi; Ballmer, Steven G.; Gillis, Eric P.; Fujii, Seiko; Schmidt, Michael J.; Palazzolo, Andrea M. E.; Lehmann, Jonathan W.; Morehouse, Greg F.; Burke, Martin D. (2015-03-13). "Synthesis of many different types of organic small molecules using one automated process". Science. 347 (6227): 1221–1226. doi:10.1126/science.aaa5414. ISSN 0036-8075. PMC 4687482. PMID 25766227.
- ^ Burke, Martin D.; Denmark, Scott E.; Diao, Ying; Han, Jiawei; Switzky, Rachel; Zhao, Huimin (March 2024). "Molecule Maker Lab Institute: Accelerating, advancing, and democratizing molecular innovation". AI Magazine. 45 (1): 117–123. doi:10.1002/aaai.12154. ISSN 0738-4602.
- ^ Angello, Nicholas H.; Friday, David M.; Hwang, Changhyun; Yi, Seungjoo; Cheng, Austin H.; Torres-Flores, Tiara C.; Jira, Edward R.; Wang, Wesley; Aspuru-Guzik, Alán; Burke, Martin D.; Schroeder, Charles M.; Diao, Ying; Jackson, Nicholas E. (2024-09-12). "Closed-loop transfer enables artificial intelligence to yield chemical knowledge". Nature. 633 (8029): 351–358. doi:10.1038/s41586-024-07892-1. ISSN 0028-0836.
- ^ Strieth-Kalthoff, Felix; Hao, Han; Rathore, Vandana; Derasp, Joshua; Gaudin, Théophile; Angello, Nicholas H.; Seifrid, Martin; Trushina, Ekaterina; Guy, Mason; Liu, Junliang; Tang, Xun; Mamada, Masashi; Wang, Wesley; Tsagaantsooj, Tuul; Lavigne, Cyrille (2024-05-17). "Delocalized, asynchronous, closed-loop discovery of organic laser emitters". Science. 384 (6697). doi:10.1126/science.adk9227. ISSN 0036-8075.
- ^ Klucznik, Tomasz; Syntrivanis, Leonidas-Dimitrios; Baś, Sebastian; Mikulak-Klucznik, Barbara; Moskal, Martyna; Szymkuć, Sara; Mlynarski, Jacek; Gadina, Louis; Beker, Wiktor; Burke, Martin D.; Tiefenbacher, Konrad; Grzybowski, Bartosz A. (2023-11-15). "Computational prediction of complex cationic rearrangement outcomes". Nature. doi:10.1038/s41586-023-06854-3. ISSN 0028-0836. PMC 10864989. PMID 37967579.
- ^ Angello, Nicholas H.; Rathore, Vandana; Beker, Wiktor; Wołos, Agnieszka; Jira, Edward R.; Roszak, Rafał; Wu, Tony C.; Schroeder, Charles M.; Aspuru-Guzik, Alán; Grzybowski, Bartosz A.; Burke, Martin D. (2022-10-28). "Closed-loop optimization of general reaction conditions for heteroaryl Suzuki-Miyaura coupling". Science. 378 (6618): 399–405. doi:10.1126/science.adc8743. ISSN 0036-8075.
- ^ Lewandowska, A.; Thornell, I.; Soutar, C.; Green, K.; Marin-Toledo, J.; Shelke, Y.; Miller, D.; Tarara, T.; Pogorelov, T.; Rienstra, C.; Welsh, M.; Weers, J.; Burke, M. (October 2023). "282 Understanding the role of cholesterol in optimizing molecular prosthetics for cystic fibrosis". Journal of Cystic Fibrosis. 22: S142 – S143. doi:10.1016/s1569-1993(23)01210-9. ISSN 1569-1993.
- ^ Lewandowska, A.; Thornell, I.; Soutar, C.; Green, K.; Lange, J.; Miller, D.; Tarara, T.; Pogorelov, T.; Rienstra, C.; Welsh, M.; Weers, J.; Burke, M. (October 2022). "607 A rationally designed molecular prosthetic for cystic fibrosis". Journal of Cystic Fibrosis. 21: S337. doi:10.1016/S1569-1993(22)01297-8.
- ^ Miller, D.; Tarara, T.; Lyons, S.; Burke, M.; Lewandowska, A.; Soutar, C.; Weers, J. (October 2022). "392 A dry powder aerosol comprising a small molecule prosthetic ion-channel for treatment of people with cystic fibrosis". Journal of Cystic Fibrosis. 21: S229. doi:10.1016/S1569-1993(22)01082-7.
- ^ Muraglia, Katrina A.; Chorghade, Rajeev S.; Kim, Bo Ram; Tang, Xiao Xiao; Shah, Viral S.; Grillo, Anthony S.; Daniels, Page N.; Cioffi, Alexander G.; Karp, Philip H.; Zhu, Lingyang; Welsh, Michael J.; Burke, Martin D. (2019-03-21). "Small-molecule ion channels increase host defences in cystic fibrosis airway epithelia". Nature. 567 (7748): 405–408. doi:10.1038/s41586-019-1018-5. ISSN 0028-0836. PMC 6492938. PMID 30867598.
- ^ Anderson, Thomas M; Clay, Mary C; Cioffi, Alexander G; Diaz, Katrina A; Hisao, Grant S; Tuttle, Marcus D; Nieuwkoop, Andrew J; Comellas, Gemma; Maryum, Nashrah; Wang, Shu; Uno, Brice E; Wildeman, Erin L; Gonen, Tamir; Rienstra, Chad M; Burke, Martin D (May 2014). "Amphotericin forms an extramembranous and fungicidal sterol sponge". Nature Chemical Biology. 10 (5): 400–406. doi:10.1038/nchembio.1496. ISSN 1552-4450. PMC 3992202. PMID 24681535.
- ^ Gray, Kaitlyn C.; Palacios, Daniel S.; Dailey, Ian; Endo, Matthew M.; Uno, Brice E.; Wilcock, Brandon C.; Burke, Martin D. (2012-02-14). "Amphotericin primarily kills yeast by simply binding ergosterol". Proceedings of the National Academy of Sciences. 109 (7): 2234–2239. doi:10.1073/pnas.1117280109. ISSN 0027-8424. PMC 3289339. PMID 22308411.
- ^ Blake, Andrew D.; Chao, Jianhua; SantaMaria, Anna M.; Ekaputri, Stella; Green, Kelsie J.; Brown, Samantha T.; Rakowski, Christopher K.; Choi, Eun-Kyung; Aring, Luisa; Chen, Peng-Jui; Snead, Nicholas M.; Matje, Douglas M.; Geng, Tao; Octaviani, Angela; Bailey, Keith (October 2024). "Minimizing higher-order aggregation maximizes iron mobilization by small molecules". Nature Chemical Biology. 20 (10): 1282–1293. doi:10.1038/s41589-024-01596-3. ISSN 1552-4450. PMC 11831690. PMID 38664586.
- ^ Ekaputri, Stella; Choi, Eun-Kyung; Sabelli, Manuela; Aring, Luisa; Green, Kelsie J.; Chang, JuOae; Bao, Kai; Choi, Hak Soo; Iwase, Shigeki; Kim, Jonghan; Corradini, Elena; Pietrangelo, Antonello; Burke, Martin D.; Seo, Young Ah (2022-06-28). "A small molecule redistributes iron in ferroportin-deficient mice and patient-derived primary macrophages". Proceedings of the National Academy of Sciences. 119 (26). doi:10.1073/pnas.2121400119. ISSN 0027-8424. PMC 9245668. PMID 35737834.
- ^ Grillo, Anthony S.; SantaMaria, Anna M.; Kafina, Martin D.; Cioffi, Alexander G.; Huston, Nicholas C.; Han, Murui; Seo, Young Ah; Yien, Yvette Y.; Nardone, Christopher; Menon, Archita V.; Fan, James; Svoboda, Dillon C.; Anderson, Jacob B.; Hong, John D.; Nicolau, Bruno G. (2017-05-12). "Restored iron transport by a small molecule promotes absorption and hemoglobinization in animals". Science. 356 (6338): 608–616. doi:10.1126/science.aah3862. ISSN 0036-8075. PMC 5470741. PMID 28495746.
- ^ Maji, Arun; Soutar, Corinne P.; Zhang, Jiabao; Lewandowska, Agnieszka; Uno, Brice E.; Yan, Su; Shelke, Yogesh; Murhade, Ganesh; Nimerovsky, Evgeny; Borcik, Collin G.; Arango, Andres S.; Lange, Justin D.; Marin-Toledo, Jonnathan P.; Lyu, Yinghuan; Bailey, Keith L. (2023-11-30). "Tuning sterol extraction kinetics yields a renal-sparing polyene antifungal". Nature. 623 (7989): 1079–1085. doi:10.1038/s41586-023-06710-4. ISSN 0028-0836. PMC 10883201. PMID 37938782.
- ^ Lewandowska, Agnieszka; Soutar, Corinne P.; Greenwood, Alexander I.; Nimerovsky, Evgeny; De Lio, Ashley M.; Holler, Jordan T.; Hisao, Grant S.; Khandelwal, Anuj; Zhang, Jiabao; SantaMaria, Anna M.; Schwieters, Charles D.; Pogorelov, Taras V.; Burke, Martin D.; Rienstra, Chad M. (December 2021). "Fungicidal amphotericin B sponges are assemblies of staggered asymmetric homodimers encasing large void volumes". Nature Structural & Molecular Biology. 28 (12): 972–981. doi:10.1038/s41594-021-00685-4. ISSN 1545-9993. PMC 9336184. PMID 34887566.
- ^ Anderson, Thomas M; Clay, Mary C; Cioffi, Alexander G; Diaz, Katrina A; Hisao, Grant S; Tuttle, Marcus D; Nieuwkoop, Andrew J; Comellas, Gemma; Maryum, Nashrah; Wang, Shu; Uno, Brice E; Wildeman, Erin L; Gonen, Tamir; Rienstra, Chad M; Burke, Martin D (May 2014). "Amphotericin forms an extramembranous and fungicidal sterol sponge". Nature Chemical Biology. 10 (5): 400–406. doi:10.1038/nchembio.1496. ISSN 1552-4450. PMC 3992202. PMID 24681535.
- ^ Gray, Kaitlyn C.; Palacios, Daniel S.; Dailey, Ian; Endo, Matthew M.; Uno, Brice E.; Wilcock, Brandon C.; Burke, Martin D. (2012-02-14). "Amphotericin primarily kills yeast by simply binding ergosterol". Proceedings of the National Academy of Sciences. 109 (7): 2234–2239. doi:10.1073/pnas.1117280109. ISSN 0027-8424. PMC 3289339. PMID 22308411.
- ^ Maji, Arun; Soutar, Corinne P.; Zhang, Jiabao; Lewandowska, Agnieszka; Uno, Brice E.; Yan, Su; Shelke, Yogesh; Murhade, Ganesh; Nimerovsky, Evgeny; Borcik, Collin G.; Arango, Andres S.; Lange, Justin D.; Marin-Toledo, Jonnathan P.; Lyu, Yinghuan; Bailey, Keith L. (2023-11-30). "Tuning sterol extraction kinetics yields a renal-sparing polyene antifungal". Nature. 623 (7989): 1079–1085. doi:10.1038/s41586-023-06710-4. ISSN 0028-0836. PMC 10883201. PMID 37938782.
- ^ Strieth-Kalthoff, Felix; Hao, Han; Rathore, Vandana; Derasp, Joshua; Gaudin, Théophile; Angello, Nicholas H.; Seifrid, Martin; Trushina, Ekaterina; Guy, Mason; Liu, Junliang; Tang, Xun; Mamada, Masashi; Wang, Wesley; Tsagaantsooj, Tuul; Lavigne, Cyrille (2024-05-17). "Delocalized, asynchronous, closed-loop discovery of organic laser emitters". Science. 384 (6697). doi:10.1126/science.adk9227. ISSN 0036-8075.
- ^ Angello, Nicholas H.; Friday, David M.; Hwang, Changhyun; Yi, Seungjoo; Cheng, Austin H.; Torres-Flores, Tiara C.; Jira, Edward R.; Wang, Wesley; Aspuru-Guzik, Alán; Burke, Martin D.; Schroeder, Charles M.; Diao, Ying; Jackson, Nicholas E. (2024-09-12). "Closed-loop transfer enables artificial intelligence to yield chemical knowledge". Nature. 633 (8029): 351–358. doi:10.1038/s41586-024-07892-1. ISSN 0028-0836.