In number theory, the Fermat–Catalan conjecture is a generalization of Fermat's Last Theorem and of Catalan's conjecture. The conjecture states that the equation
1 |
has only finitely many solutions (a, b, c, m, n, k) with distinct triplets of values (am, bn, ck) where a, b, c are positive coprime integers and m, n, k are positive integers satisfying
2 |
The inequality on m, n, and k is a necessary part of the conjecture. Without the inequality there would be infinitely many solutions, for instance with k = 1 (for any a, b, m, and n and with c = am + bn), with m=n=k=2 (for the infinitely many Pythagorean triples), and e.g. .
Known solutions
As of 2015 the following ten solutions to equation (1) which meet the criteria of equation (2) are known:[1]
- (for to satisfy Eq. 2)
The first of these (1m + 23 = 32) is the only solution where one of a, b or c is 1, according to the Catalan conjecture, proven in 2002 by Preda Mihăilescu. While this case leads to infinitely many solutions of (1) (since one can pick any m for m > 6), these solutions only give a single triplet of values (am, bn, ck).
Partial results
It is known by the Darmon–Granville theorem, which uses Faltings's theorem, that for any fixed choice of positive integers m, n and k satisfying (2), only finitely many coprime triples (a, b, c) solving (1) exist.[2][3]: p. 64 However, the full Fermat–Catalan conjecture is stronger as it allows for the exponents m, n and k to vary.
The abc conjecture implies the Fermat–Catalan conjecture.[4]
For a list of results for impossible combinations of exponents, see Beal conjecture#Partial results. Beal's conjecture is true if and only if all Fermat–Catalan solutions have m = 2, n = 2, or k = 2.
See also
- Sums of powers, a list of related conjectures and theorems
References
- ^ Pomerance, Carl (2008), "Computational Number Theory", in Gowers, Timothy; Barrow-Green, June; Leader, Imre (eds.), The Princeton Companion to Mathematics, Princeton University Press, pp. 361–362, ISBN 978-0-691-11880-2.
- ^ Darmon, H.; Granville, A. (1995). "On the equations zm = F(x, y) and Axp + Byq = Czr". Bulletin of the London Mathematical Society. 27 (6): 513–43. doi:10.1112/blms/27.6.513.
- ^ Elkies, Noam D. (2007). "The ABC's of Number Theory" (PDF). The Harvard College Mathematics Review. 1 (1).
- ^ Waldschmidt, Michel (2015). "Lecture on the conjecture and some of its consequences". Mathematics in the 21st century (PDF). Springer Proc. Math. Stat. Vol. 98. Basel: Springer. pp. 211–230. doi:10.1007/978-3-0348-0859-0_13. ISBN 978-3-0348-0858-3. MR 3298238.
External links
- Perfect Powers: Pillai's works and their developments. Waldschmidt, M.
- Sloane, N. J. A. (ed.). "Sequence A214618 (Perfect powers z^r that can be written in the form x^p + y^q, where x, y, z are positive coprime integers and p, q, r are positive integers satisfying 1/p + 1/q + 1/r < 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.