2-Nitrochlorobenzene is an organic compound with the formula ClC6H4NO2. It is one of three isomeric nitrochlorobenzenes.[1] It is a yellow crystalline solid that is important as a precursor to other compounds due to its two functional groups.

Synthesis

Nitrochlorobenzene is typically synthesized by nitration of chlorobenzene in the presence of sulfuric acid:

C6H5Cl + HNO3 → O2NC6H4Cl + H2O

This reaction affords a mixture of isomers. Using an acid ratio of 30% nitric acid, 56% sulfuric acid and 14% water, the product mix is typically 34-36% 2-nitrochlorobenzene and 63-65% 4-nitrochlorobenzene, with only about 1% 3-nitrochlorobenzene.[1]

Reactions

2-Nitrochlorobenzene can be reduced to the 2-chloroaniline with Fe/HCl mixture, the Bechamp reduction.[1]

2-Nitrochlorobenzene, like its isomers, is reactive toward nucleophiles, resulting in chloride substitution. With polysulfide, it reacts to give di-orthonitrophenyl disulfide:[2]

2 O2NC6H4Cl + Na2S2 → (O2NC6H4S)2 + 2 NaCl

Similarly, it reacts with sodium methoxide to give 2-nitroanisole.

Substitution of chloride by fluoride is also practiced commercially to convert 2-nitrochlorobenzene to 2-fluoronitrobenzene. The Halex process uses potassium fluoride in polar solvents like sulfolane :

O2NC6H4Cl + KF → O2NC6H4F + KCl

Applications

2-Nitrochlorobenzene is useful because both of its reactive sites can be utilized to create further compounds that are mutually ortho. Its derivative 2-chloroaniline is a precursor to 3,3’-dichlorobenzidine, a precursor to dyes and pesticides.

References

  1. ^ a b c Booth, Gerald (2000). "Nitro Compounds, Aromatic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a17_411. ISBN 978-3-527-30385-4.
  2. ^ Bogert, Marston T.; Stull, Arthur (1928). "Di-o-Nitrophenyl Disulfide". Organic Syntheses. 8: 64. doi:10.15227/orgsyn.008.0064.
No tags for this post.