Adenosine thiamine triphosphate (AThTP), or thiaminylated adenosine triphosphate, is a natural thiamine adenine nucleotide.[1] It was discovered in Escherichia coli where it may account for up to 15 - 20% of total thiamine under carbon starvation. AThTP also exists in eukaryotic organisms such as yeast, roots of higher plants and animal tissues, albeit at a much lower concentration. It was found to exist in small amounts in the muscle, heart, brain, kidneys and liver of mice.[2]

In E. coli AThTP is synthesized from thiamine diphosphate (ThDP) according to the following reaction catalyzed by thiamine diphosphate adenylyl transferase:[3]

ThDP + ATP (ADP) ↔ AThTP + PPi (Pi)

Structure and function

The molecule is made up of thiamine and adenosine joined together with phosphate groups. It is similar in structure to NAD+. The function of AThTP is not currently known but it has been shown to inhibit the activity of PARP-1.[2]

References

  1. ^ Bettendorff L, Wirtzfeld B, Makarchikov AF, et al. (2007). "Discovery of a natural thiamine adenine nucleotide". Nat. Chem. Biol. 3 (4): 211–2. doi:10.1038/nchembio867. hdl:2268/518. PMID 17334376. S2CID 28498198.
  2. ^ a b Tanaka T, Yamamoto D, Sato T, Tanaka S, Usui K, Manabe M, Aoki Y, Iwashima Y, Saito Y, Mino Y, Deguchi H (2011). "Adenosine thiamine triphosphate (AThTP) inhibits poly(ADP-ribose) polymerase-1(PARP-1) activity". J Nutr Sci Vitaminol (Tokyo). 57 (2): 192–6. doi:10.3177/jnsv.57.192. PMID 21697640.
  3. ^ Makarchikov AF, Brans A, Bettendorff L (2007). "Thiamine diphosphate adenylyl transferase from E. coli: functional characterization of the enzyme synthesizing adenosine thiamine triphosphate". BMC Biochem. 8: 17. doi:10.1186/1471-2091-8-17. PMC 1976097. PMID 17705845.
No tags for this post.