A total lunar eclipse will occur at the Moon’s descending node of orbit on Saturday, January 12, 2047,[1] with an umbral magnitude of 1.2358. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 4.6 days before perigee (on January 16, 2047, at 16:20 UTC), the Moon's apparent diameter will be larger.[2]

Visibility

The eclipse will be completely visible over eastern North and South America, Europe, and much of Africa, seen rising over western North and South America and setting over much of Asia.[3]

Eclipse details

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]

January 12, 2047 Lunar Eclipse Parameters
Parameter Value
Penumbral Magnitude 2.26653
Umbral Magnitude 1.23575
Gamma 0.33171
Sun Right Ascension 19h33m56.9s
Sun Declination -21°40'46.3"
Sun Semi-Diameter 16'15.8"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 07h34m18.1s
Moon Declination +21°59'20.2"
Moon Semi-Diameter 15'46.6"
Moon Equatorial Horizontal Parallax 0°57'54.2"
ΔT 83.2 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of January 2047
January 12
Descending node (full moon)
January 26
Ascending node (new moon)
Total lunar eclipse
Lunar Saros 125
Partial solar eclipse
Solar Saros 151

Eclipses in 2047

Metonic

Tzolkinex

Half-Saros

Tritos

Lunar Saros 125

Inex

Triad

Lunar eclipses of 2046–2049

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

The penumbral lunar eclipses on May 17, 2049 and November 9, 2049 occur in the next lunar year eclipse set.

Lunar eclipse series sets from 2046 to 2049
Descending node   Ascending node
Saros Date
Viewing
Type
Chart
Gamma Saros Date
Viewing
Type
Chart
Gamma
115 2046 Jan 22
Partial
0.9885 120 2046 Jul 18
Partial
−0.8691
125 2047 Jan 12
Total
0.3317 130 2047 Jul 07
Total
−0.0636
135 2048 Jan 01
Total
−0.3745 140 2048 Jun 26
Partial
0.6796
145 2048 Dec 20
Penumbral
−1.0624 150 2049 Jun 15
Penumbral
1.4068

Saros 125

This eclipse is a part of Saros series 125, repeating every 18 years, 11 days, and containing 72 events. The series started with a penumbral lunar eclipse on July 17, 1163. It contains partial eclipses from January 17, 1470 through June 6, 1686; total eclipses from June 17, 1704 through March 19, 2155; and a second set of partial eclipses from March 29, 2173 through June 25, 2317. The series ends at member 72 as a penumbral eclipse on September 9, 2443.

The longest duration of totality was produced by member 37 at 100 minutes, 23 seconds on August 22, 1812. All eclipses in this series occur at the Moon’s descending node of orbit.[6]

Greatest First
The greatest eclipse of the series occurred on 1812 Aug 22, lasting 100 minutes, 23 seconds.[7] Penumbral Partial Total Central
1163 Jul 17
1470 Jan 17
1704 Jun 17
1758 Jul 20
Last
Central Total Partial Penumbral
1920 Oct 27
2155 Mar 19
2317 Jun 25
2443 Sep 09

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
1806 Nov 26
(Saros 103)
1828 Sep 23
(Saros 105)
1839 Aug 24
(Saros 106)
1850 Jul 24
(Saros 107)
1861 Jun 22
(Saros 108)
1872 May 22
(Saros 109)
1883 Apr 22
(Saros 110)
1894 Mar 21
(Saros 111)
1905 Feb 19
(Saros 112)
1916 Jan 20
(Saros 113)
1926 Dec 19
(Saros 114)
1937 Nov 18
(Saros 115)
1948 Oct 18
(Saros 116)
1959 Sep 17
(Saros 117)
1970 Aug 17
(Saros 118)
1981 Jul 17
(Saros 119)
1992 Jun 15
(Saros 120)
2003 May 16
(Saros 121)
2014 Apr 15
(Saros 122)
2025 Mar 14
(Saros 123)
2036 Feb 11
(Saros 124)
2047 Jan 12
(Saros 125)
2057 Dec 11
(Saros 126)
2068 Nov 09
(Saros 127)
2079 Oct 10
(Saros 128)
2090 Sep 08
(Saros 129)
2101 Aug 09
(Saros 130)
2112 Jul 09
(Saros 131)
2123 Jun 09
(Saros 132)
2134 May 08
(Saros 133)
2145 Apr 07
(Saros 134)
2156 Mar 07
(Saros 135)
2167 Feb 04
(Saros 136)
2178 Jan 04
(Saros 137)
2188 Dec 04
(Saros 138)
2199 Nov 02
(Saros 139)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
1815 Jun 21
(Saros 117)
1844 May 31
(Saros 118)
1873 May 12
(Saros 119)
1902 Apr 22
(Saros 120)
1931 Apr 02
(Saros 121)
1960 Mar 13
(Saros 122)
1989 Feb 20
(Saros 123)
2018 Jan 31
(Saros 124)
2047 Jan 12
(Saros 125)
2075 Dec 22
(Saros 126)
2104 Dec 02
(Saros 127)
2133 Nov 12
(Saros 128)
2162 Oct 23
(Saros 129)
2191 Oct 02
(Saros 130)

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two annular solar eclipses of Solar Saros 132.

January 5, 2038 January 16, 2056

See also

Notes

  1. ^ "January 11–12, 2047 Total Lunar Eclipse (Blood Moon)". timeanddate. Retrieved 11 December 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 11 December 2024.
  3. ^ "Total Lunar Eclipse of 2047 Jan 12" (PDF). NASA. Retrieved 11 December 2024.
  4. ^ "Total Lunar Eclipse of 2047 Jan 12". EclipseWise.com. Retrieved 11 December 2024.
  5. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  6. ^ "NASA - Catalog of Lunar Eclipses of Saros 125". eclipse.gsfc.nasa.gov.
  7. ^ Listing of Eclipses of series 125
  8. ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros


No tags for this post.