A partial lunar eclipse will occur at the Moon’s descending node of orbit on Thursday, May 16, 2041,[1] with an umbral magnitude of 0.0663. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A partial lunar eclipse occurs when one part of the Moon is in the Earth's umbra, while the other part is in the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring about 5.8 days before perigee (on May 21, 2041, at 21:20 UTC), the Moon's apparent diameter will be larger.[2]
Visibility
The eclipse will be completely visible over South America, Europe, and Africa, seen rising over much of North America and setting over west, central, and South Asia.[3]
![]() ![]() |
Eclipse details
Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]
Parameter | Value |
---|---|
Penumbral Magnitude | 1.07651 |
Umbral Magnitude | 0.06627 |
Gamma | −0.97468 |
Sun Right Ascension | 03h32m49.6s |
Sun Declination | +19°08'35.5" |
Sun Semi-Diameter | 15'49.2" |
Sun Equatorial Horizontal Parallax | 08.7" |
Moon Right Ascension | 15h31m30.5s |
Moon Declination | -20°01'25.1" |
Moon Semi-Diameter | 15'39.6" |
Moon Equatorial Horizontal Parallax | 0°57'28.4" |
ΔT | 79.9 s |
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
April 30 Ascending node (new moon) |
May 16 Descending node (full moon) |
---|---|
![]() |
![]() |
Total solar eclipse Solar Saros 129 |
Partial lunar eclipse Lunar Saros 141 |
Related eclipses
Eclipses in 2041
- A total solar eclipse on April 30.
- A partial lunar eclipse on May 16.
- An annular solar eclipse on October 25.
- A partial lunar eclipse on November 8.
Metonic
- Preceded by: Lunar eclipse of July 27, 2037
- Followed by: Lunar eclipse of March 3, 2045
Tzolkinex
- Preceded by: Lunar eclipse of April 3, 2034
- Followed by: Lunar eclipse of June 26, 2048
Half-Saros
- Preceded by: Solar eclipse of May 9, 2032
- Followed by: Solar eclipse of May 20, 2050
Tritos
- Preceded by: Lunar eclipse of June 15, 2030
- Followed by: Lunar eclipse of April 14, 2052
Lunar Saros 141
- Preceded by: Lunar eclipse of May 5, 2023
- Followed by: Lunar eclipse of May 27, 2059
Inex
- Preceded by: Lunar eclipse of June 4, 2012
- Followed by: Lunar eclipse of April 25, 2070
Triad
- Preceded by: Lunar eclipse of July 16, 1954
- Followed by: Lunar eclipse of March 16, 2128
Lunar eclipses of 2038–2042
This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]
The penumbral lunar eclipses on January 21, 2038 and July 16, 2038 occur in the previous lunar year eclipse set, and the penumbral lunar eclipses on April 5, 2042 and September 29, 2042 occur in the next lunar year eclipse set.
Lunar eclipse series sets from 2038 to 2042 | ||||||||
---|---|---|---|---|---|---|---|---|
Descending node | Ascending node | |||||||
Saros | Date Viewing |
Type Chart |
Gamma | Saros | Date Viewing |
Type Chart |
Gamma | |
111 | 2038 Jun 17![]() |
Penumbral![]() |
1.3082 | 116 | 2038 Dec 11![]() |
Penumbral![]() |
−1.1448 | |
121 | 2039 Jun 06![]() |
Partial![]() |
0.5460 | 126 | 2039 Nov 30![]() |
Partial![]() |
−0.4721 | |
131 | 2040 May 26![]() |
Total![]() |
−0.1872 | 136 | 2040 Nov 18![]() |
Total![]() |
0.2361 | |
141 | 2041 May 16![]() |
Partial![]() |
−0.9746 | 146 | 2041 Nov 08![]() |
Partial![]() |
0.9212 | |
156 | 2042 Oct 28![]() |
Penumbral![]() |
− |
Metonic series
The Metonic cycle repeats nearly exactly every 19 years and represents a Saros cycle plus one lunar year. Because it occurs on the same calendar date, the Earth's shadow will be in nearly the same location relative to the background stars.
|
|
![]() |
![]() |
Saros 141
This eclipse is a part of Saros series 141, repeating every 18 years, 11 days, and containing 72 events. The series started with a penumbral lunar eclipse on August 25, 1608. It contains partial eclipses from May 16, 2041 through July 20, 2149; total eclipses from August 1, 2167 through May 1, 2618; and a second set of partial eclipses from May 12, 2636 through July 16, 2744. The series ends at member 72 as a penumbral eclipse on October 11, 2888.
The longest duration of totality will be produced by member 39 at 104 minutes, 36 seconds on October 16, 2293. All eclipses in this series occur at the Moon’s descending node of orbit.[6]
Greatest | First | |||
---|---|---|---|---|
The greatest eclipse of the series will occur on 2293 Oct 16, lasting 104 minutes, 36 seconds.[7] | Penumbral | Partial | Total | Central |
1608 Aug 25 |
2041 May 16![]() |
2167 Aug 01 |
2221 Sep 02 | |
Last | ||||
Central | Total | Partial | Penumbral | |
2546 Mar 18 |
2618 May 01 |
2744 Jul 16 |
2888 Oct 11 |
Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
Series members 12–33 occur between 1801 and 2200: | |||||
---|---|---|---|---|---|
12 | 13 | 14 | |||
1806 Dec 25 | 1825 Jan 04 | 1843 Jan 16 | |||
15 | 16 | 17 | |||
1861 Jan 26 | 1879 Feb 07 | 1897 Feb 17 | |||
18 | 19 | 20 | |||
1915 Mar 01 | 1933 Mar 12 | 1951 Mar 23 | |||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
21 | 22 | 23 | |||
1969 Apr 02 | 1987 Apr 14 | 2005 Apr 24 | |||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
24 | 25 | 26 | |||
2023 May 05 | 2041 May 16 | 2059 May 27 | |||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
27 | 28 | 29 | |||
2077 Jun 06 | 2095 Jun 17 | 2113 Jun 29 | |||
30 | 31 | 32 | |||
2131 Jul 10 | 2149 Jul 20 | 2167 Aug 01 | |||
33 | |||||
2185 Aug 11 | |||||
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | |||||||||
---|---|---|---|---|---|---|---|---|---|
1801 Mar 30 (Saros 119) |
1812 Feb 27 (Saros 120) |
1823 Jan 26 (Saros 121) |
1833 Dec 26 (Saros 122) |
1844 Nov 24 (Saros 123) | |||||
1855 Oct 25 (Saros 124) |
1866 Sep 24 (Saros 125) |
1877 Aug 23 (Saros 126) |
1888 Jul 23 (Saros 127) |
1899 Jun 23 (Saros 128) | |||||
1910 May 24 (Saros 129) |
1921 Apr 22 (Saros 130) |
1932 Mar 22 (Saros 131) |
1943 Feb 20 (Saros 132) |
1954 Jan 19 (Saros 133) | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
1964 Dec 19 (Saros 134) |
1975 Nov 18 (Saros 135) |
1986 Oct 17 (Saros 136) |
1997 Sep 16 (Saros 137) |
2008 Aug 16 (Saros 138) | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
2019 Jul 16 (Saros 139) |
2030 Jun 15 (Saros 140) |
2041 May 16 (Saros 141) |
2052 Apr 14 (Saros 142) |
2063 Mar 14 (Saros 143) | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
2074 Feb 11 (Saros 144) |
2085 Jan 10 (Saros 145) |
2095 Dec 11 (Saros 146) |
2106 Nov 11 (Saros 147) |
2117 Oct 10 (Saros 148) | |||||
2128 Sep 09 (Saros 149) |
2139 Aug 10 (Saros 150) |
2150 Jul 09 (Saros 151) |
2161 Jun 08 (Saros 152) |
2172 May 08 (Saros 153) | |||||
2194 Mar 07 (Saros 155) | |||||||||
Half-Saros cycle
A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two annular solar eclipses of Solar Saros 148.
May 9, 2032 | May 20, 2050 |
---|---|
![]() |
![]() |
See also
Notes
- ^ "May 15–16, 2041 Partial Lunar Eclipse". timeanddate. Retrieved 2 December 2024.
- ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 2 December 2024.
- ^ "Partial Lunar Eclipse of 2041 May 16" (PDF). NASA. Retrieved 2 December 2024.
- ^ "Partial Lunar Eclipse of 2041 May 16". EclipseWise.com. Retrieved 2 December 2024.
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Lunar Eclipses of Saros 141". eclipse.gsfc.nasa.gov.
- ^ Listing of Eclipses of series 141
- ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros
External links
- 2041 May 16 chart: Eclipse Predictions by Fred Espenak, NASA/GSFC
You must be logged in to post a comment.