Randall David Kamien (born February 25, 1966)[citation needed] is a theoretical condensed matter physicist specializing in the physics of liquid crystals and is the Vicki and William Abrams Professor in the Natural Sciences at the University of Pennsylvania.[1]

Biography

Randall Kamien was born to economist Morton Kamien and Lenore Kamien on February 25, 1966, and grew up in Wilmette, Illinois on the outskirts of Chicago.[2] Kamien completed a B.S. and a M.S. in physics at the California Institute of Technology in 1988 and completed a PhD in physics at Harvard University in 1992 under the supervision of David R. Nelson.[3] Prior to joining the faculty at the University of Pennsylvania he was a member of the Institute for Advanced Study in Princeton, New Jersey, and a postdoctoral research associate at the University of Pennsylvania. Kamien was appointed assistant professor at the University of Pennsylvania in 1997 and promoted to full professor in 2003.[4] Kamien is a fellow of the American Physical Society and the American Association for the Advancement of Science.[4] Kamien was the chief editor of Reviews of Modern Physics.[5]

Research

Randall Kamien studies soft condensed matter – and in particular liquid crystalline phases of matter – through the lens of geometry and topology.[6] In particular, Kamien has contributed to understanding Twist Grain Boundaries,[7] Focal Conic Domains,[8] and defect topology in smectic liquid crystals.[9] He is also known for his idiosyncratic naming conventions, such as “Shnerk’s Surface” [10] and “Shmessel Functions.”

Publications

References

  1. ^ "Randall Kamien". www.physics.upenn.edu. Retrieved 2022-05-05.
  2. ^ In memoriam: Professor Emeritus Morton I. Kamien, 1938-2011, retrieved 2022-05-05.
  3. ^ Harvard PhD Theses in Physics: 1971-2000, retrieved 2022-05-05.
  4. ^ a b Curriculum vitae (PDF), retrieved 2022-05-05.
  5. ^ APS Editorial Office: Reviews of Modern Physics, retrieved 2022-05-05.
  6. ^ Kamien Group, retrieved 2022-05-05.
  7. ^ Kamien, R. D.; Lubensky, T. C. (1999). "Minimal surfaces, screw dislocations, and twist grain boundaries". Physical Review Letters. 82 (14): 2892–2895. arXiv:cond-mat/9808306. Bibcode:1999PhRvL..82.2892K. doi:10.1103/PhysRevLett.82.2892. S2CID 15354995.
  8. ^ Alexander, G. P.; Chen, B. G.; Matsumoto, E. A.; Kamien, R. D. (2010). "The Power of Poincaré: Elucidating the Hidden Symmetries in Focal Conic Domains". Physical Review Letters. 104 (25): 257802. arXiv:1004.0465. doi:10.1103/PhysRevLett.104.257802. PMID 20867415. S2CID 8291259.
  9. ^ Machon, T.; Aharoni, H.; Hu, Y.; Kamien, R. D. (2019). "Aspects of Defect Topology in Smectic Liquid Crystals". Communications in Mathematical Physics. 372 (2): 525–542. arXiv:1808.04104. Bibcode:2019CMaPh.372..525M. doi:10.1007/s00220-019-03366-y. S2CID 52435763.
  10. ^ Santangelo, C. D.; Kamien, R. D. (2007). "Triply periodic smectic liquid crystals". Physical Review E. 75 (1 Pt 1): 011702. arXiv:cond-mat/0609596. Bibcode:2007PhRvE..75a1702S. doi:10.1103/PhysRevE.75.011702. PMID 17358168. S2CID 119371099.
No tags for this post.