Cycloheptane, also known as Suberane,[1] is an organic compound, which belongs to the group of cycloalkanes. The compound can occur in different conformers.
Production
Cycloheptane occurs naturally in petroleum and can be extracted from it. It is synthesized by a Clemmensen reduction from cycloheptanone.[2]
Properties
Cycloheptane is a colorless liquid with a mild, aromatic odor. The boiling point at normal pressure is 119°C.[3] The molar enthalpy of vaporization is 38.5 kJ mol−1.[4] According to the Antoine equation, the vapor pressure function is given by log10(P) = A−(B/(T+C)) (P in bar, T in K) with A = 3,97710, B = 1330,402 and C = −56,946 in the temperature range from 341.3 K to 432.2 K.[4]
In the solid phase, cycloheptane occurs in four polymorphic forms.[4][5] The transformation temperatures for the conversion from form IV to form III are −138°C, from form III to form II −75°C and from form II to form I −61°C.[4] Form I melts at −8°C.[4][3]
Property | Type | Value [Unit] | Note |
---|---|---|---|
Standard enthalpy of formation | ΔfH0liquid | −156,4 kJ·mol−1[6] | |
Standard entropy | S0liquid | 242,55 J·mol−1·K−1[4] | as a liquid |
Heat of combustion | ΔcH0liquid | −4598,9 kJ·mol−1[6] | |
Heat capacity | cp | 180,614 J·mol−1·K−1 (25 °C)[7] 132,0 J·mol−1·K−1 (25 °C)[8] |
as a liquid as a gas |
Triple point | Ttriple | 265,12 K[4] | |
Critical temperature | Tc | 604,2 K[9] | |
Critical pressure | pc | 38,2 bar[9] | |
Critical volume | Vc | 0.353 l·mol−1[9] | |
Critical density | ρc | 2,83 mol·l−1[9] |
Chemical properties
Cycloheptane can be thermally rearranged to methylcyclohexane in the presence of aluminum trichloride.
![](https://upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Cycloheptane_rearrangement_to_methylcyclohexane.svg/220px-Cycloheptane_rearrangement_to_methylcyclohexane.svg.png)
Functionalization can be achieved by chlorination with N-chlorosuccinimide.[10]
![](https://upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Cycloheptane_NCS_chlorination.svg/220px-Cycloheptane_NCS_chlorination.svg.png)
The compound is flammable and forms flammable vapour-air mixtures with air.[3] The flash point is 6 °C, the lower explosion limit is 1.1 vol.%.[3]
Usage
Cycloheptane can be used as a non-polar solvent. In organic synthesis, the cycloheptyl functional groups can be introduced into organic molecules, e.g. pharmaceutical active ingredients, after functionalization.
Hazards
An irritating effect on the eyes and respiratory tract is mentioned in the literature. The toxic effect is more comparable to that of methylcyclohexane, which only slightly irritates the mucous membranes. Animal experiments showed only a slight irritating effect on the skin. Systemically, cycloheptane has a depressant effect on the central nervous system.[3]
Further reading
- Dragojlovic, V. (2015). "Conformational analysis of cycloalkanes". ChemTexts. 1 (14). Bibcode:2015ChTxt...1...14D. doi:10.1007/s40828-015-0014-0. Retrieved 3 December 2024.
- Reusch, William (2008) [1999]. "Ch. 5. Saturated Hydrocarbons—Alkanes and Cycloalkanes". An Introduction to Organic Chemistry. East Lansing, MI: William Reusch and Michigan State University. Retrieved 3 December 2024.
- Bocian, D. F.; Pickett, H. M.; Rounds, Thomas C.; Strauss, Herbert L. (1975). "Conformations of cycloheptane". Journal of the American Chemical Society. 97 (4): 687–695. doi:10.1021/ja00837a001. ISSN 0002-7863.
References
- ^ "DNB, Katalog der Deutschen Nationalbibliothek" (in German). Deutsche Nationalbibliothek. 2024-12-06. Retrieved 2025-02-06.
- ^ Communications, EBCONT. "Cycloheptan". RÖMPP, Thieme (in German). Retrieved 2025-02-05.
- ^ a b c d e "Cycloheptan". gestis.dguv.de. Retrieved 2025-02-05.
- ^ a b c d e f g Finke, H. L.; Scott, D. W.; Gross, M. E.; Messerly, J. F.; Waddington, Guy (1956). "Cycloheptane, Cycloöctane and 1,3,5-Cycloheptatriene. Low Temperature Thermal Properties, Vapor Pressure and Derived Chemical Thermodynamic Properties". Journal of the American Chemical Society. 78 (21): 5469–5476. doi:10.1021/ja01602a003. ISSN 0002-7863.
- ^ Domalski, Eugene S.; Hearing, Elizabeth D. (1996-01-01). "Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III" (PDF). Journal of Physical and Chemical Reference Data. 25 (1): 1. doi:10.1063/1.555985. ISSN 0047-2689. Retrieved 2025-02-05.
- ^ a b Spitzer, Ralph; Huffman, Hugh M. (1947). "The Heats of Combustion of Cyclopentane, Cyclohexane, Cycloheptane and Cyclooctane". Journal of the American Chemical Society. 69 (2): 211–213. doi:10.1021/ja01194a006. ISSN 0002-7863. PMID 20292425.
- ^ Fortier, Jean-Luc; D'arcy, Patrick J.; Benson, George C. (1979). "Heat capacities of binary cycloalkane mixtures at 298.15 K". Thermochimica Acta. 28 (1). Elsevier BV: 37–43. doi:10.1016/0040-6031(79)87005-7. ISSN 0040-6031.
- ^ Dorofeeva, O. V.; Gurvich, L. V.; Jorish, V. S. (1986-04-01). "Thermodynamic Properties of Twenty-One Monocyclic Hydrocarbons". Journal of Physical and Chemical Reference Data. 15 (2): 437–464. doi:10.1063/1.555773. ISSN 0047-2689.
- ^ a b c d Daubert, Thomas E. (1996-01-01). "Vapor−Liquid Critical Properties of Elements and Compounds. 5. Branched Alkanes and Cycloalkanes". Journal of Chemical & Engineering Data. 41 (3): 365–372. doi:10.1021/je9501548. ISSN 0021-9568.
- ^ Buu-Hoï, Ng. Ph.; Demerseman, P. (1953). "Halogenation of Saturated Compounds with N-Chloro-And N-Bromo-Succinimide". The Journal of Organic Chemistry. 18 (6): 649–652. doi:10.1021/jo01134a005. ISSN 0022-3263.
You must be logged in to post a comment.