2MASS J05352184-0546085, abbreviated to 2M0535-05 and also known by its variable star designation V2384 Orionis, is a young eclipsing binary brown dwarf system in the Orion Nebula, about 1,200 light-years (370 parsecs) away. It was discovered in 2006 and was the first eclipsing brown dwarf system to be discovered,[5][6] predating the discovery of the transiting brown dwarf CoRoT-3b in 2008.
![](https://upload.wikimedia.org/wikipedia/commons/thumb/d/d5/V2384OriLightCurve.png/220px-V2384OriLightCurve.png)
The pair orbit each other with a period of 9.8 days, and are about 60 and 38 times the mass of Jupiter, respectively. The system is very young, at an age of about 1 million years, so the brown dwarfs have yet to cool; they are M-type objects with temperatures comparable to red dwarf stars, and they are inflated in size to over half the radius of the Sun.[4][6] The primary is observed to rotate with a period of 3.3 days and the secondary 14 days, indicating that they have not yet become tidally locked to each other.[4]
Unexpectedly, the less massive (secondary) brown dwarf is the hotter of the pair.[6][2] Possible explanations for this temperature reversal include the two brown dwarfs differing slightly in age;[2] strong magnetic fields on the primary inhibiting convection,[2] supported by the primary's observed fast rotation and strong hydrogen-alpha emission;[7] large starspots on the primary,[4] though this was found to be unsupported by evidence;[8] and tidal heating, which is unlikely to be solely responsible for the temperature reversal.[9]
No infrared excess that would indicate the presence of a circumstellar disk has been detected in this system.[10] The system is a source of X-ray emission.[11]
See also
- 2M1510, another eclipsing binary brown dwarf
Notes
- ^ Derived from the primary temperature of 2715 K and the secondary/primary temperature ratio of 1.050
References
- ^ a b c d Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
- ^ a b c d e f Stassun, Keivan G.; Mathieu, Robert D.; Valenti, Jeff A. (August 2007). "A Surprising Reversal of Temperatures in the Brown Dwarf Eclipsing Binary 2MASS J05352184-0546085". The Astrophysical Journal. 664 (2): 1154–1166. arXiv:0704.3106. Bibcode:2007ApJ...664.1154S. doi:10.1086/519231.
- ^ a b c d "V* V2384 Ori". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 8 May 2024.
- ^ a b c d e f Gómez Maqueo Chew, Yilen; Stassun, Keivan G.; Prša, Andrej; Mathieu, Robert D. (July 2009). "Near-infrared Light Curves of the Brown Dwarf Eclipsing Binary 2MASS J05352184-0546085: Can Spots Explain the Temperature Reversal?". The Astrophysical Journal. 699 (2): 1196–1208. arXiv:0905.0491. Bibcode:2009ApJ...699.1196G. doi:10.1088/0004-637X/699/2/1196.
- ^ Stassun, Keivan G.; Mathieu, Robert D.; Valenti, Jeff A. (March 2006). "Discovery of two young brown dwarfs in an eclipsing binary system". Nature. 440 (7082): 311–314. Bibcode:2006Natur.440..311S. doi:10.1038/nature04570. PMID 16541067.
- ^ a b c "Astronomers Measure Precise Mass of a Binary Brown Dwarf". hubblesite.org. STScI. 15 March 2006. Retrieved 8 May 2024.
- ^ Reiners, A.; Seifahrt, A.; et al. (December 2007). "Detection of Strong Activity in the Eclipsing Binary Brown Dwarf 2MASS J05352184-0546085: A Possible Explanation for the Temperature Reversal". The Astrophysical Journal. 671 (2): L149 – L152. arXiv:0711.0536. Bibcode:2007ApJ...671L.149R. doi:10.1086/525255.
- ^ Mohanty, Subhanjoy; Stassun, Keivan G. (October 2012). "High-resolution Spectroscopy during Eclipse of the Young Substellar Eclipsing Binary 2MASS 0535-0546. II. Secondary Spectrum: No Evidence that Spots Cause the Temperature Reversal". The Astrophysical Journal. 758 (1): 12. arXiv:1208.0300. Bibcode:2012ApJ...758...12M. doi:10.1088/0004-637X/758/1/12.
- ^ Heller, R.; Jackson, B.; et al. (May 2010). "Tidal effects on brown dwarfs: application to the eclipsing binary 2MASS J05352184-0546085. The anomalous temperature reversal in the context of tidal heating". Astronomy and Astrophysics. 514: A22. arXiv:1002.1246. Bibcode:2010A&A...514A..22H. doi:10.1051/0004-6361/200912826.
- ^ Mohanty, Subhanjoy; Stassun, Keivan G.; Mathieu, Robert D. (May 2009). "Circumstellar Environment and Effective Temperature of the Young Substellar Eclipsing Binary 2MASS J05352184-0546085". The Astrophysical Journal. 697 (1): 713–720. arXiv:0903.1892. Bibcode:2009ApJ...697..713M. doi:10.1088/0004-637X/697/1/713.
- ^ Czesla, S.; Schneider, P. C.; Schmitt, J. H. M. M. (December 2008). "Discovery of X-ray emission from the eclipsing brown-dwarf binary 2MASS J05352184-0546085". Astronomy & Astrophysics. 491 (3): 851–854. doi:10.1051/0004-6361:200810818.
Further reading
- Mohanty, Subhanjoy; Stassun, Keivan G.; Doppmann, Greg W. (October 2010). "High-resolution Spectroscopy During Eclipse of the Young Substellar Eclipsing Binary 2MASS 0535-0546. I. Primary Spectrum: Cool Spots Versus Opacity Uncertainties". The Astrophysical Journal. 722 (2): 1138–1147. arXiv:1008.2304. Bibcode:2010ApJ...722.1138M. doi:10.1088/0004-637X/722/2/1138.