In information theory and statistics, Kullback's inequality is a lower bound on the Kullback–Leibler divergence expressed in terms of the large deviations rate function.[1] If P and Q are probability distributions on the real line, such that P is absolutely continuous with respect to Q, i.e. P << Q, and whose first moments exist, then where is the rate function, i.e. the convex conjugate of the cumulant-generating function, of , and is the first moment of
The Cramér–Rao bound is a corollary of this result.
Proof
Let P and Q be probability distributions (measures) on the real line, whose first moments exist, and such that P << Q. Consider the natural exponential family of Q given by for every measurable set A, where is the moment-generating function of Q. (Note that Q0 = Q.) Then By Gibbs' inequality we have so that Simplifying the right side, we have, for every real θ where where is the first moment, or mean, of P, and is called the cumulant-generating function. Taking the supremum completes the process of convex conjugation and yields the rate function:
Corollary: the Cramér–Rao bound
Start with Kullback's inequality
Let Xθ be a family of probability distributions on the real line indexed by the real parameter θ, and satisfying certain regularity conditions. Then
where is the convex conjugate of the cumulant-generating function of and is the first moment of
Left side
The left side of this inequality can be simplified as follows: which is half the Fisher information of the parameter θ.
Right side
The right side of the inequality can be developed as follows: This supremum is attained at a value of t=τ where the first derivative of the cumulant-generating function is but we have so that Moreover,
Putting both sides back together
We have: which can be rearranged as:
See also
- Kullback–Leibler divergence
- Cramér–Rao bound
- Fisher information
- Large deviations theory
- Convex conjugate
- Rate function
- Moment-generating function
Notes and references
- ^ Fuchs, Aimé; Letta, Giorgio (1970). "L'inégalité de Kullback. Application à la théorie de l'estimation". Séminaire de Probabilités de Strasbourg. Séminaire de probabilités. 4. Strasbourg: 108–131.