In probability and statistics, the logarithmic distribution (also known as the logarithmic series distribution or the log-series distribution) is a discrete probability distribution derived from the Maclaurin series expansion

From this we obtain the identity

This leads directly to the probability mass function of a Log(p)-distributed random variable:

for k ≥ 1, and where 0 < p < 1. Because of the identity above, the distribution is properly normalized.

The cumulative distribution function is

where B is the incomplete beta function.

A Poisson compounded with Log(p)-distributed random variables has a negative binomial distribution. In other words, if N is a random variable with a Poisson distribution, and Xi, i = 1, 2, 3, ... is an infinite sequence of independent identically distributed random variables each having a Log(p) distribution, then

has a negative binomial distribution. In this way, the negative binomial distribution is seen to be a compound Poisson distribution.

R. A. Fisher described the logarithmic distribution in a paper that used it to model relative species abundance.[1]

See also

References

  1. ^ Fisher, R. A.; Corbet, A. S.; Williams, C. B. (1943). "The Relation Between the Number of Species and the Number of Individuals in a Random Sample of an Animal Population" (PDF). Journal of Animal Ecology. 12 (1): 42–58. doi:10.2307/1411. JSTOR 1411. Archived from the original (PDF) on 2011-07-26.

Further reading

No tags for this post.