Benzyl cyanide
| Names | |
|---|---|
| Preferred IUPAC name
Phenylacetonitrile[1] | |
| Other names | |
| Identifiers | |
3D model (JSmol)
|
|
| ChEBI | |
| ChemSpider | |
| ECHA InfoCard | 100.004.919 |
| KEGG | |
PubChem CID
|
|
| UNII | |
CompTox Dashboard (EPA)
|
|
| |
| |
| Properties | |
| C8H7N | |
| Molar mass | 117.15 g/mol |
| Appearance | Colorless oily liquid |
| Density | 1.015 g/cm3 |
| Melting point | −24 °C (−11 °F; 249 K) |
| Boiling point | 233 to 234 °C (451 to 453 °F; 506 to 507 K) |
| 0.1 g/L (25 °C) | |
| log P | 1.56 |
| Vapor pressure | 1 mmHg (60 °C) |
| −76.87·10−6 cm3/mol | |
Refractive index (nD)
|
1.52105 (25 °C) |
| Hazards[2] | |
| Occupational safety and health (OHS/OSH): | |
Main hazards
|
Poisonous. May be fatal if inhaled, swallowed, or absorbed through skin. Contact may cause burns to skin and eyes. |
| GHS labelling: | |
| Danger | |
| H301, H302, H311, H330 | |
| P260, P262, P264, P270, P271, P280, P284, P301+P316, P301+P317, P302+P352, P304+P340, P316, P320, P321, P330, P361+P364, P403+P233, P405, P501 | |
| NFPA 704 (fire diamond) | |
| Flash point | 102 °C (216 °F; 375 K)[3] |
| Lethal dose or concentration (LD, LC): | |
LD50 (median dose)
|
270 mg/kg (rat, oral) |
LDLo (lowest published)
|
74.982 mg/kg (rat, intraperitoneal) 50 mg/kg (rabbit, subcutaneous) 120 mg/kg (pigeon, intramuscular) |
LC50 (median concentration)
|
100 mg/m3 (mouse, 2h) 430 mg/m3 (rat, 2h) |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
| |
Benzyl cyanide (abbreviated BnCN), also known as phenylacetonitrile, is an organic compound with the chemical formula C6H5CH2CN. This colorless oily aromatic liquid is an important precursor to numerous compounds in organic chemistry.[4] It is also an important pheromone in certain species.[5]
Preparation
Benzyl cyanide can be produced via Kolbe nitrile synthesis between benzyl chloride and sodium cyanide[6] and by oxidative decarboxylation of phenylalanine.[7]
Benzyl cyanides can also be prepared by arylation of silyl-substituted acetonitrile.[8]
Reactions
Benzyl cyanide undergoes many reactions characteristic of nitriles. It can be hydrolyzed to give phenylacetic acid[9] or it can be used in the Pinner reaction to yield phenylacetic acid esters.[10] Hydrogenation gives β-phenethylamine.[11]
The compound contains an "active methylene unit". Bromination occurs gives PhCHBrCN.[12] A variety of base-induced reactions result in the formation of new carbon-carbon bonds.[13][14][15]
Uses
Benzyl cyanide is used as a solvent[16] and as a starting material in the synthesis of fungicides (e.g. Fenapanil),[17] fragrances (phenethyl alcohol), antibiotics,[4] and other pharmaceuticals. The partial hydrolysis of BnCN results in 2-phenylacetamide.[18]
Pharmaceuticals
Benzyl cyanide is a useful precursor to numerous pharmaceuticals. Examples include:[19]
- Antiarrhythmics (e.g. disopyramide)[19]
- Antidepressants: E.g. Milnacipran & Lomevactone
- Antihistamines (e.g. levocabastine (para-fluoro),[19][20] Pheniramine & Azatadine.
- Antitussives (e.g. isoaminile, oxeladin, butethamate, pentapiperide, and pentoxyverine)[21]
- Diuretics (e.g. triamterene)[22]
- Hypnotics (e.g. alonimid and phenobarbital)[19][23] & Phenglutarimide
- Spasmolytics (e.g. pentapiperide and drofenine)[19][24]
- Stimulants (e.g. methylphenidate),[19] mazindol & gamfexine.
- Opioids (e.g. ethoheptazine, pethidine, and phenoperidine)[19] & methadone
- SERMs, e.g. Triphenylacrylonitrile [6304-33-2] (aka "TPAN")[25][26][27]
Regulation
Because benzyl cyanide is a useful precursor to numerous drugs with recreational use potential, many countries strictly regulate the compound.
United States
Benzyl cyanide is regulated in the United States as a DEA List I chemical.
China
Benzyl cyanide is regulated in People's Republic of China as a Class III drug precursor since 7 June 2021.[28]
Safety
Benzyl cyanide, like related benzyl derivatives, is an irritant to the skin and eyes.[4]
See also
References
- ^ a b Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 16. doi:10.1039/9781849733069-FP001. ISBN 978-0-85404-182-4.
- ^ "Phenylacetonitrile". pubchem.ncbi.nlm.nih.gov. Retrieved 4 May 2025.
- ^ "Phenylacetonitrile". pubchem.ncbi.nlm.nih.gov. Retrieved 24 December 2025.
- ^ a b c Pollak, Peter; Romeder, Gérard; Hagedorn, Ferdinand; Gelbke, Heinz-Peter (2000). "Nitriles". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a17_363. ISBN 3-527-30673-0.
- ^ "Toxin Protects Migratory Locusts from Cannibalism". Max Planck Society. 4 May 2023. Retrieved 8 December 2024.
- ^ Adams, Roger; Thal, A. F. (1922). "Benzyl cyanide". Organic Syntheses. 2: 9. doi:10.15227/orgsyn.002.0009.
- ^ Hiegel, Gene; Lewis, Justin; Bae, Jason (2004). "Conversion of α-Amino Acids into Nitriles by Oxidative Decarboxylation with Trichloroisocyanuric Acid". Synthetic Communications. 34 (19): 3449–3453. doi:10.1081/SCC-200030958. S2CID 52208189.
- ^ Wu, Lingyun; Hartwig, John F. (2005). "Mild Palladium-Catalyzed Selective Monoarylation of Nitriles". Journal of the American Chemical Society. 127 (45): 15824–15832. Bibcode:2005JAChS.12715824W. doi:10.1021/ja053027x. PMID 16277525.
- ^ Adams, Roger; Thal, A. F. (1922). "Phenylacetic acid". Organic Syntheses. 2: 59. doi:10.15227/orgsyn.002.0059.
- ^ Adams, Roger; Thal, A. F. (1922). "Ethyl Phenylacetate". Organic Syntheses. 2: 27. doi:10.15227/orgsyn.002.0027.
- ^ Robinson, John C. Jr.; Snyder, H. R. (1943). "β-Phenylethylamine". Organic Syntheses. 23: 71. doi:10.15227/orgsyn.023.0071.
- ^ Robb, C. M.; Schultz, E. M. (1948). "Diphenylacetonitrile". Organic Syntheses. 28: 55. doi:10.15227/orgsyn.028.0055.
- ^ Makosza, M.; Jonczyk, A (1976). "Phase-Transfer Alkylation of Nitriles: 2-Phenylbutyronitrile". Organic Syntheses. 55: 91. doi:10.15227/orgsyn.055.0091.
- ^ Itoh, Masumi; Hagiwara, Daijiro; Kamiya, Takashi (1988). "New Reagent for tert-Butoxycarbonylation: 2-tert-Butoxycarbonyloxyimino-2-phenylacetonitrile". Organic Syntheses. 6: 199. doi:10.15227/orgsyn.059.0095.
- ^ Wawzonek, Stanley; Smolin, Edwin M. (1955). "α-Phenylcinnamonitrile". Organic Syntheses. 3: 715. doi:10.15227/orgsyn.029.0083.
- ^ Bien, Hans-Samuel; Stawitz, Josef; Wunderlich, Klaus (2000). "Anthraquinone Dyes and Intermediates". Ullmann's Encyclopedia of Industrial Chemistry: 29. doi:10.1002/14356007.a02_355. ISBN 3-527-30673-0.
- ^ Ackermann, Peter; Margot, Paul; Müller, Franz (2000). "Fungicides, Agricultural". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a12_085. ISBN 3-527-30673-0.
- ^ "PHENYLACETAMIDE". Organic Syntheses. 32: 92. 1952. doi:10.15227/orgsyn.032.0092. ISSN 0078-6209.
- ^ a b c d e f g William Andrew Publishing (2008). Pharmaceutical Manufacturing Encyclopedia (3rd ed.). Norwich, NY: Elsevier Science. pp. 182, 936, 1362, 1369, 1505, 2036, 2157, 2259, 2554, 2620, 2660, 2670, 2924, 3032, & 3410. ISBN 978-0-8155-1526-5.
- ^ Berkoff, Charles E.; Rivard, Donald E.; Kirkpatrick, David; Ives, Jeffrey L. (1980). "The Reductive Decyanation of Nitriles by Alkali Fusion". Synthetic Communications. 10 (12): 939–945. doi:10.1080/00397918008061855.
- ^ Bub, Oskar; Friedrich, Ludwig (2000). "Cough Remedies". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a08_013. ISBN 3-527-30673-0.
- ^ Hropot, Max; Lang, Hans-Jochen (2000). "Diuretics". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a09_029. ISBN 3-527-30673-0.
- ^ Furniss, Brian; Hannaford, Antony; Smith, Peter & Tatchell, Austin (1996). Vogel's Textbook of Practical Organic Chemistry 5th Ed. London: Longman Science & Technical. pp. 1174–1179. ISBN 978-0-582-46236-6.
- ^ Bungardt, Edwin; Mutschler, Ernst (2000). "Spasmolytics". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a24_515. ISBN 3-527-30673-0.
- ^ "a,b-DIPHENYLCINNAMONITRILE". Organic Syntheses. 31: 52. 1951. doi:10.15227/orgsyn.031.0052.
- ^ Dore, J. C.; Gilbert, J.; Bignon, E.; Crastes De Paulet, A.; Ojasoo, T.; Pons, M.; Raynaud, J. P.; Miquel, J. F. (February 1992). "Multivariate analysis by the minimum spanning tree method of the structural determinants of diphenylethylenes and triphenylacrylonitriles implicated in estrogen receptor binding, protein kinase C activity, and MCF7 cell proliferation". Journal of Medicinal Chemistry. 35 (3): 573–583. doi:10.1021/jm00081a021.
- ^ Bignon, E.; Pons, M.; Crastes De Paulet, A.; Dore, J. C.; Gilbert, J.; Abecassis, J.; Miquel, J. F.; Ojasoo, T.; Raynaud, J. P. (September 1989). "Effect of triphenylacrylonitrile derivatives on estradiol-receptor binding and on human breast cancer cell growth". Journal of Medicinal Chemistry. 32 (9): 2092–2103. doi:10.1021/jm00129a013.
- ^ "国务院办公厅关于同意将α-苯乙酰乙酸甲酯等6种物质列入易制毒化学品品种目录的函" (in Simplified Chinese). The State Council - The People's Republic of China. 7 June 2021. Retrieved 11 October 2021.


