A total lunar eclipse will occur at the Moon’s descending node of orbit on Sunday, October 30, 2050,[1] with an umbral magnitude of 1.0549. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 1.9 days after perigee (on October 28, 2050, at 5:10 UTC), the Moon's apparent diameter will be larger.[2]
This lunar eclipse is the second of a tetrad, with four total lunar eclipses in series, the others being on May 6, 2050; April 26, 2051; and October 19, 2051.
Visibility
The eclipse will be completely visible over North and South America, west Africa, and western Europe, seen rising over the central and eastern Pacific Ocean and setting over central and east Africa, eastern Europe, and west, central, and south Asia.[3]
![]() ![]() |
Eclipse details
Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]
Parameter | Value |
---|---|
Penumbral Magnitude | 2.03564 |
Umbral Magnitude | 1.05490 |
Gamma | 0.44351 |
Sun Right Ascension | 14h18m15.4s |
Sun Declination | -13°48'46.9" |
Sun Semi-Diameter | 16'06.2" |
Sun Equatorial Horizontal Parallax | 08.9" |
Moon Right Ascension | 02h17m49.7s |
Moon Declination | +14°14'46.2" |
Moon Semi-Diameter | 16'25.2" |
Moon Equatorial Horizontal Parallax | 1°00'15.6" |
ΔT | 85.6 s |
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
October 30 Descending node (full moon) |
November 14 Ascending node (new moon) |
---|---|
![]() |
![]() |
Total lunar eclipse Lunar Saros 127 |
Partial solar eclipse Solar Saros 153 |
Related eclipses
Eclipses in 2050
- A total lunar eclipse on May 6.
- A hybrid solar eclipse on May 20.
- A total lunar eclipse on October 30.
- A partial solar eclipse on November 14.
Metonic
- Preceded by: Lunar eclipse of January 12, 2047
- Followed by: Lunar eclipse of August 18, 2054
Tzolkinex
- Preceded by: Lunar eclipse of September 19, 2043
- Followed by: Lunar eclipse of December 11, 2057
Half-Saros
- Preceded by: Solar eclipse of October 25, 2041
- Followed by: Solar eclipse of November 5, 2059
Tritos
- Preceded by: Lunar eclipse of November 30, 2039
- Followed by: Lunar eclipse of September 29, 2061
Lunar Saros 127
- Preceded by: Lunar eclipse of October 18, 2032
- Followed by: Lunar eclipse of November 9, 2068
Inex
- Preceded by: Lunar eclipse of November 19, 2021
- Followed by: Lunar eclipse of October 10, 2079
Triad
- Preceded by: Lunar eclipse of December 30, 1963
- Followed by: Lunar eclipse of August 30, 2137
Lunar eclipses of 2049–2052
This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]
The penumbral lunar eclipse on June 15, 2049 occurs in the previous lunar year eclipse set.
Lunar eclipse series sets from 2049 to 2052 | ||||||||
---|---|---|---|---|---|---|---|---|
Ascending node | Descending node | |||||||
Saros | Date Viewing |
Type Chart |
Gamma | Saros | Date Viewing |
Type Chart |
Gamma | |
112 | 2049 May 17![]() |
Penumbral![]() |
−1.1337 | 117 | 2049 Nov 09![]() |
Penumbral![]() |
1.1964 | |
122 | 2050 May 06![]() |
Total![]() |
−0.4181 | 127 | 2050 Oct 30![]() |
Total![]() |
0.4435 | |
132 | 2051 Apr 26![]() |
Total![]() |
0.3371 | 137 | 2051 Oct 19![]() |
Total![]() |
−0.2542 | |
142 | 2052 Apr 14![]() |
Penumbral![]() |
1.0628 | 147 | 2052 Oct 08![]() |
Partial![]() |
−0.9726 |
Saros 127
This eclipse is a part of Saros series 127, repeating every 18 years, 11 days, and containing 72 events. The series started with a penumbral lunar eclipse on July 9, 1275. It contains partial eclipses from November 4, 1473 through May 18, 1780; total eclipses from May 29, 1798 through November 9, 2068; and a second set of partial eclipses from November 20, 2086 through June 17, 2429. The series ends at member 72 as a penumbral eclipse on September 2, 2555.
The longest duration of totality was produced by member 35 at 101 minutes, 46 seconds on July 23, 1888. All eclipses in this series occur at the Moon’s descending node of orbit.[6]
Greatest | First | |||
---|---|---|---|---|
The greatest eclipse of the series occurred on 1888 Jul 23, lasting 101 minutes, 46 seconds.[7] | Penumbral | Partial | Total | Central |
1275 Jul 09 |
1473 Nov 04 |
1798 May 29 |
1834 Jun 21 | |
Last | ||||
Central | Total | Partial | Penumbral | |
1960 Sep 05![]() |
2068 Nov 09![]() |
2429 Jun 17 |
2555 Sep 02 |
Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
Series members 31–52 occur between 1801 and 2200: | |||||
---|---|---|---|---|---|
31 | 32 | 33 | |||
1816 Jun 10 | 1834 Jun 21 | 1852 Jul 01 | |||
34 | 35 | 36 | |||
1870 Jul 12 | 1888 Jul 23 | 1906 Aug 04 | |||
![]() |
![]() | ||||
37 | 38 | 39 | |||
1924 Aug 14 | 1942 Aug 26 | 1960 Sep 05 | |||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
40 | 41 | 42 | |||
1978 Sep 16 | 1996 Sep 27 | 2014 Oct 08 | |||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
43 | 44 | 45 | |||
2032 Oct 18 | 2050 Oct 30 | 2068 Nov 09 | |||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
46 | 47 | 48 | |||
2086 Nov 20 | 2104 Dec 02 | 2122 Dec 13 | |||
49 | 50 | 51 | |||
2140 Dec 23 | 2159 Jan 04 | 2177 Jan 14 | |||
52 | |||||
2195 Jan 26 | |||||
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | |||||||||
---|---|---|---|---|---|---|---|---|---|
1810 Sep 13 (Saros 105) |
1821 Aug 13 (Saros 106) |
1832 Jul 12 (Saros 107) |
1843 Jun 12 (Saros 108) |
1854 May 12 (Saros 109) | |||||
1865 Apr 11 (Saros 110) |
1876 Mar 10 (Saros 111) |
1887 Feb 08 (Saros 112) |
1898 Jan 08 (Saros 113) |
1908 Dec 07 (Saros 114) | |||||
![]() |
![]() | ||||||||
1919 Nov 07 (Saros 115) |
1930 Oct 07 (Saros 116) |
1941 Sep 05 (Saros 117) |
1952 Aug 05 (Saros 118) |
1963 Jul 06 (Saros 119) | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
1974 Jun 04 (Saros 120) |
1985 May 04 (Saros 121) |
1996 Apr 04 (Saros 122) |
2007 Mar 03 (Saros 123) |
2018 Jan 31 (Saros 124) | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
2028 Dec 31 (Saros 125) |
2039 Nov 30 (Saros 126) |
2050 Oct 30 (Saros 127) |
2061 Sep 29 (Saros 128) |
2072 Aug 28 (Saros 129) | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
2083 Jul 29 (Saros 130) |
2094 Jun 28 (Saros 131) |
2105 May 28 (Saros 132) |
2116 Apr 27 (Saros 133) |
2127 Mar 28 (Saros 134) | |||||
![]() |
![]() |
![]() |
![]() |
||||||
2138 Feb 24 (Saros 135) |
2149 Jan 23 (Saros 136) |
2159 Dec 24 (Saros 137) |
2170 Nov 23 (Saros 138) |
2181 Oct 22 (Saros 139) | |||||
2192 Sep 21 (Saros 140) | |||||||||
Half-Saros cycle
A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two annular solar eclipses of Solar Saros 134.
October 25, 2041 | November 5, 2059 |
---|---|
![]() |
![]() |
See also
Notes
- ^ "October 29–30, 2050 Total Lunar Eclipse (Blood Moon)". timeanddate. Retrieved 12 December 2024.
- ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 12 December 2024.
- ^ "Total Lunar Eclipse of 2050 Oct 30" (PDF). NASA. Retrieved 12 December 2024.
- ^ "Total Lunar Eclipse of 2050 Oct 30". EclipseWise.com. Retrieved 12 December 2024.
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Lunar Eclipses of Saros 127". eclipse.gsfc.nasa.gov.
- ^ Listing of Eclipses of series 127
- ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros
External links
- 2050 Oct 30 chart: Eclipse Predictions by Fred Espenak, NASA/GSFC
You must be logged in to post a comment.