A total lunar eclipse will occur at the Moon’s ascending node of orbit on Saturday, May 17, 2087,[1] with an umbral magnitude of 1.4568. It will be a central lunar eclipse, in which part of the Moon will pass through the center of the Earth's shadow. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 2 days after apogee (on May 15, 2087, at 15:25 UTC), the Moon's apparent diameter will be smaller.[2]

Visibility

The eclipse will be completely visible over east and southeast Asia, Australia, and Antarctica, seen rising over much of Africa, central and eastern Europe, and west, central, and south Asia and setting over the central and eastern Pacific Ocean.[3]

Eclipse details

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]

May 17, 2087 Lunar Eclipse Parameters
Parameter Value
Penumbral Magnitude 2.52894
Umbral Magnitude 1.45675
Gamma 0.19987
Sun Right Ascension 03h38m52.3s
Sun Declination +19°28'43.2"
Sun Semi-Diameter 15'49.1"
Sun Equatorial Horizontal Parallax 08.7"
Moon Right Ascension 15h38m58.3s
Moon Declination -19°17'59.5"
Moon Semi-Diameter 14'45.2"
Moon Equatorial Horizontal Parallax 0°54'08.7"
ΔT 114.5 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of May–June 2087
May 2
Descending node (new moon)
May 17
Ascending node (full moon)
June 1
Descending node (new moon)
Partial solar eclipse
Solar Saros 120
Total lunar eclipse
Lunar Saros 132
Partial solar eclipse
Solar Saros 158

Eclipses in 2087

Metonic

Tzolkinex

Half-Saros

Tritos

Lunar Saros 132

Inex

Triad

Lunar eclipses of 2085–2088

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

The penumbral lunar eclipses on January 10, 2085 and July 7, 2085 occur in the previous lunar year eclipse set.

Lunar eclipse series sets from 2085 to 2088
Ascending node   Descending node
Saros Date
Viewing
Type
Chart
Gamma Saros Date
Viewing
Type
Chart
Gamma
112 2085 Jun 08
Penumbral
−1.2745 117 2085 Dec 01
Penumbral
1.2189
122 2086 May 28
Partial
−0.5585 127 2086 Nov 20
Partial
0.4799
132 2087 May 17
Total
0.1999 137 2087 Nov 10
Total
−0.2043
142 2088 May 05
Partial
0.9387 147 2088 Oct 30
Partial
−0.9147

Saros 132

This eclipse is a part of Saros series 132, repeating every 18 years, 11 days, and containing 71 events. The series started with a penumbral lunar eclipse on May 12, 1492. It contains partial eclipses from August 16, 1636 through March 24, 1997; total eclipses from April 4, 2015 through August 2, 2213; and a second set of partial eclipses from August 13, 2231 through November 30, 2411. The series ends at member 71 as a penumbral eclipse on June 26, 2754.

The longest duration of totality will be produced by member 36 at 106 minutes, 6 seconds on June 9, 2123. All eclipses in this series occur at the Moon’s ascending node of orbit.[6]

Greatest First

The greatest eclipse of the series will occur on 2123 Jun 09, lasting 106 minutes, 6 seconds.[7]
Penumbral Partial Total Central
1492 May 12
1636 Aug 16
2015 Apr 04
2069 May 06
Last
Central Total Partial Penumbral
2177 Jul 11
2213 Aug 02
2411 Nov 30
2754 Jun 26

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
1803 Aug 03
(Saros 106)
1814 Jul 02
(Saros 107)
1825 Jun 01
(Saros 108)
1836 May 01
(Saros 109)
1847 Mar 31
(Saros 110)
1858 Feb 27
(Saros 111)
1869 Jan 28
(Saros 112)
1879 Dec 28
(Saros 113)
1890 Nov 26
(Saros 114)
1901 Oct 27
(Saros 115)
1912 Sep 26
(Saros 116)
1923 Aug 26
(Saros 117)
1934 Jul 26
(Saros 118)
1945 Jun 25
(Saros 119)
1956 May 24
(Saros 120)
1967 Apr 24
(Saros 121)
1978 Mar 24
(Saros 122)
1989 Feb 20
(Saros 123)
2000 Jan 21
(Saros 124)
2010 Dec 21
(Saros 125)
2021 Nov 19
(Saros 126)
2032 Oct 18
(Saros 127)
2043 Sep 19
(Saros 128)
2054 Aug 18
(Saros 129)
2065 Jul 17
(Saros 130)
2076 Jun 17
(Saros 131)
2087 May 17
(Saros 132)
2098 Apr 15
(Saros 133)
2109 Mar 17
(Saros 134)
2120 Feb 14
(Saros 135)
2131 Jan 13
(Saros 136)
2141 Dec 13
(Saros 137)
2152 Nov 12
(Saros 138)
2163 Oct 12
(Saros 139)
2174 Sep 11
(Saros 140)
2185 Aug 11
(Saros 141)
2196 Jul 10
(Saros 142)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
1826 Nov 14
(Saros 123)
1855 Oct 25
(Saros 124)
1884 Oct 04
(Saros 125)
1913 Sep 15
(Saros 126)
1942 Aug 26
(Saros 127)
1971 Aug 06
(Saros 128)
2000 Jul 16
(Saros 129)
2029 Jun 26
(Saros 130)
2058 Jun 06
(Saros 131)
2087 May 17
(Saros 132)
2116 Apr 27
(Saros 133)
2145 Apr 07
(Saros 134)
2174 Mar 18
(Saros 135)

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two total solar eclipses of Solar Saros 139.

May 11, 2078 May 22, 2096

See also

Notes

  1. ^ "May 17–18, 2087 Total Lunar Eclipse (Blood Moon)". timeanddate. Retrieved 14 December 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 14 December 2024.
  3. ^ "Total Lunar Eclipse of 2087 May 17" (PDF). NASA. Retrieved 14 December 2024.
  4. ^ "Total Lunar Eclipse of 2087 May 17". EclipseWise.com. Retrieved 14 December 2024.
  5. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  6. ^ "NASA - Catalog of Lunar Eclipses of Saros 132". eclipse.gsfc.nasa.gov.
  7. ^ Listing of Eclipses of series 132
  8. ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros


No tags for this post.